
1

U08182 © Peter Lo 2010 1

Testing PracticeTesting Practice

Lecture 9

In this lecture you will learn:

• Dynamic testing

• Black box and White box testing

• Test planning

• Testing procedures

2

U08182 © Peter Lo 2010 2

Types of Dynamic System TestingTypes of Dynamic System Testing

Function – Modes of operation

Load/Stress – Robustness, reliability

Volume/Performance – Capacity, efficiency

Configuration – Portability

Security – Integrity, safety

Installation – Ease of installing, de-installed, upgraded

Reliability – Stability

Recovery – Fault tolerance

Diagnostics – Maintainability

Human Factors – User friendliness

Dynamic Testing involves the computer operation of the system (or module) under test

System testing can assess many aspects of system performance. From the project manager’s point
of view system testing may involve considerable extra planning. For example, load or stress
testing (increasing the load on the system until its performance begins to degrade) may require
additional hardware to be acquired possibly extra staff (who may need initial training) etc.

The main forms of system testing are:

• Function – The system performs the functions required of it

• Load/Stress – The impact on performance of increasing the amount the system is doing or
the impact of running other systems concurrently with it. Does the system degrade
'gracefully'?

• Volume/Performance – Measuring the performance of the system at various levels of
loading (unlike the last set of tests this is not intended to 'break' the system).

• Configuration – Systems are often developed on different hardware from that which will
be used for live running of the system - or in the case of packages it may have to run on
several hardware platforms.

• Security – Is it possible to breach the security of the system in anyway?

• Installation – Can the software be installed once it has been packaged? In some cases
installation software may have had to be written and tested.

• Reliability – Can the system run for long periods without crashing?

• Recovery – How well does the system recover from failure? This may include difficult to
simulate problems such as hardware errors.

• Diagnostics – In the event of failure, is diagnostic information produced? This could also
include systems where there is an auditing requirement that, for example, a transaction can
be traced through the system.

• Human Factors – Of use, consistency of interfaces etc

3

U08182 © Peter Lo 2010 3

Dynamic Module TestingDynamic Module Testing

Test entire program, single module, procedure or
code segment
Test module code in isolation using a simulated
environment provided by a test harness
Test Harness – A program designed specifically
to test a module.

The program inputs appropriate test inputs to
and records outputs from the module under test.

A separate test harness is required for each code
module

Each module to test requires a self contained test harness to supply the test inputs,
call module under test and capture the outputs.

The module outputs are compared with known good output

The test harness can be used at any time to conform the module operation

4

U08182 © Peter Lo 2010 4

Dynamic Testing: General ProcedureDynamic Testing: General Procedure

Specification
Test
Plan

Expected
Outputs

Actual
Outputs

?
Compare
Results

Module
Code

White or Glass
Box Testing

5

U08182 © Peter Lo 2010 5

Basic Elements of Dynamic TestingBasic Elements of Dynamic Testing

The Program under Test

The Test Case

The Observation

The Analysis of Test Results

The Program under Test

• Must be executable

• May need additional code to make it executable (e.g. libraries)

The Test Case

• The input data to run the program

• The expected output / dynamic behaviour (e.g. timing)

The Observation

• The aspects of behaviour to be observed

• Means of observation (e.g. GUI or text file etc.)

The Analysis of Test Results

• The correctness of behaviour

• The adequacy (e.g. coverage)

6

U08182 © Peter Lo 2010 6

Black Box Dynamic Testing TechniquesBlack Box Dynamic Testing Techniques

Functional Testing

Boundary Value

Equivalence Partitioning

Performance Testing

Random Testing

Error Seeding

Error Guessing

Stress Testing

7

U08182 © Peter Lo 2010 7

Black Box Dynamic Testing Techniques:Black Box Dynamic Testing Techniques:
Functional TestingFunctional Testing

Specific test cases defined to test each aspect of
operation or system function, using a black box
approach

8

U08182 © Peter Lo 2010 8

Black Box Dynamic Testing Techniques:Black Box Dynamic Testing Techniques:
Boundary ValueBoundary Value

Test performed at extremes of each input and
output range, typically choosing values either side
and on the boundary, to include both valid or
invalid values.

9

U08182 © Peter Lo 2010 9

Black Box Dynamic Testing Techniques:Black Box Dynamic Testing Techniques:
Equivalence PartitioningEquivalence Partitioning

Group sets of input and output ranges that can be
treated in same way.
Test performed on each set.

Equivalence partitioning – group sets of input and output ranges that can be treated in
same way. Test performed on each set.

Aim is to reduce the number of discrete tests. An ideal test case single-handedly
uncovers a class of errors (e.g. incorrect processing of all character data) that might
otherwise require many cases to be executed before the general error is observed. An
equivalence class could be: a single numeric value, a range of values, a set of related
values or a Boolean condition. Then, for example, if the input condition specifies a set
then one valid and one invalid equivalence class are defined.

10

U08182 © Peter Lo 2010 10

Black Box Dynamic Testing Techniques: Black Box Dynamic Testing Techniques:
Performance TestingPerformance Testing

Examines the system behaviour in terms of
resource utilization (e.g. CPU time, CPU
complexity, memory or disk usage, network or I/O
requirements) in normal and stressed processed
conditions

11

U08182 © Peter Lo 2010 11

Black Box Dynamic Testing Techniques:Black Box Dynamic Testing Techniques:
Random TestingRandom Testing

Functional or structural testing in which it has
been decided to test some random sample of tests
or input vectors.

An effective random test will match the inputs
expected during system operation

12

U08182 © Peter Lo 2010 12

Black Box Dynamic Testing Techniques: Black Box Dynamic Testing Techniques:
Error SeedingError Seeding

Some known types of mistakes are inserted (seeded) into
the program, and the program is executed with the test
cases under test conditions.

If only some of the seeded errors are found, the test case
set is not adequate.

The ratio of found seeded errors to the total number of
seeded errors is an estimate of the ratio of found real errors
to the total number of errors.

This gives a possibility of estimating the number of
remaining errors and thereby the remaining test effort.

Found Seeded Errors

True Seeded Errors

Found Real Errors

Total Real Errors
=

Error seeding – involves inserting errors into the implementation to check that the testing
will find them, and hence check the testing process

Some known types of mistakes are inserted (seeded) into the program, and the program
is executed with the test cases under test conditions. If only some of the seeded errors
are found, the test case set is not adequate. The ratio of found seeded errors to the total
number of seeded errors is an estimate of the ratio of found real errors to the total
number of errors. This gives a possibility of estimating the number of remaining errors
and thereby the remaining test effort. Found seeded errors/true seeded errors =
found real errors/total real errors

13

U08182 © Peter Lo 2010 13

Black Box Dynamic Testing Techniques:Black Box Dynamic Testing Techniques:
Error GuessingError Guessing

Predict error conditions where test cases based on possible
operation situations
Experienced test engineers may be able to predict sensitive
input conditions that may cause problems.
Testing experience and intuition combined with knowledge
and curiosity about the system under test may add some
un-categorized test cases to the designed test case set.
Special values or combinations of values may be error-
prone.

E.g. what happens if two buttons are pushed
simultaneously?

Error guessing – experienced test engineers may be able to predict sensitive input
conditions that may cause problems.

Testing experience and intuition combined with knowledge and curiosity about the system
under test may add some un-categorized test cases to the designed test case set.
Special values or combinations of values may be error-prone. For example, can the
buttons be pushed on a front-panel too fast or too often? and what happens if two buttons
are pushed simultaneously?

14

U08182 © Peter Lo 2010 14

Black Box Dynamic Testing Techniques: Black Box Dynamic Testing Techniques:
Stress TestingStress Testing

A form of performance testing

Involves operating the system under conditions of
high workload

E.g. create additional network traffic when
testing a distributed database performance

Stress testing (a form of performance testing) – involves operating the system under
conditions of high workload (e.g. create additional network traffic when testing a
distributed database performance)

15

U08182 © Peter Lo 2010 15

Example of Black Box Dynamic Example of Black Box Dynamic
TestingTesting

Test module against its (external) specification, no
knowledge of internal code (i.e. check module outputs)

Function dodgy_product(x,y:integer):integer;
{ calculate product of integers x and y }
Var product:integer;
Begin

product:=x*y;
if product=42 then

product:=24; { sabotage !}
dodgy_product:=product

End

With black box
testing we cannot

see the module
internal code

Black box testing (test plan) with random data values from input domain:
Writeln(dodgy_product(4,5)); { is ok: expected=20, observed=20 }
Writeln(dodgy_product(5,6)); { is ok : expected=30, observed=30 }
Writeln(dodgy_product(6,7)); { is NOT ok : expected=42, observed=24 }
. . .

Test scripts

Example black box test plan

Choose values from input domain

Check for correct operation/output

Check against external spec only

Obvious limitation to black box testing

16

U08182 © Peter Lo 2010 16

Boundary AnalysisBoundary Analysis

The purpose:

To test if the boundaries implemented by the software are correct

The method:

Select test cases on and around the borders

The basic assumptions:

The software computes different function on points inside the sub-
domain from the points outside the sub-domain

Domain is decomposed into sub-domains by borders, which are
simple, such as straight lines and planes

Boundary errors are simple, such as shift errors and rotation errors

Errors arise frequently from >, >= and < <= confusion/ambiguity

17

U08182 © Peter Lo 2010 17

Boundary Value TestingBoundary Value Testing

Aim is to detect errors relating to the input domain

Basis of the technique validity is that program
errors are frequently associated with range
boundary values, e.g:

Use of < where £ should be used

In C, int a[10] defines elements 0 to 9,
reference to a[10] is a common programming
error

18

U08182 © Peter Lo 2010 18

Equivalence PartitioningEquivalence Partitioning

Black box technique based on category sets of
inputs

E.g. input domain [a, b]

a b

X X XTest data

Input domain

19

U08182 © Peter Lo 2010 19

Basic Boundary Testing ModelBasic Boundary Testing Model

Consider a data input x with domain range [a, b]
and y from [c, d]

1-D

Number of tests: 5

2-D

Number of tests: 9

a b

a b
c

d

20

U08182 © Peter Lo 2010 20

Robustness Boundary Testing ModelRobustness Boundary Testing Model

Consider a data input x with domain range [a, b]
and y from [c, d]

1-D

Number of tests: 7

2-D

Number of tests: 13

a b

a b
c

d

21

U08182 © Peter Lo 2010 21

Worst Case Boundary Testing ModelWorst Case Boundary Testing Model

Consider a data input x with domain range [a, b]
and y from [c, d]

1-D

Number of tests: 5 (51)

2-D

Number of tests: 25 (52)

a b

a b
c

d

22

U08182 © Peter Lo 2010 22

Worst Case Robust Boundary Testing Worst Case Robust Boundary Testing
ModelModel

Consider a data input x with domain range [a, b]
and y from [c, d]

1-D

Number of tests: 7 (71)

2-D

Number of tests: 49 (72)

a b

a
b

c

d

23

U08182 © Peter Lo 2010 23

Adequacy Criteria (using White Box Adequacy Criteria (using White Box
Static Testing)Static Testing)

No. of tests: 49

a b

c

d

Adequacy Criteria - no of tests: 12

Where x and y testing is independent

a b
c

d

Worst Case Robust
Boundary Testing

Previous basic, boundary, robustness and worst case testing strategies are
intuitive but are over often adequate – not all the tests are required

For Adequate Testing consider the minimum subset of tests that cover each
boundary condition

So in the case of the previous example

E.g. for testing for point inside a rectangle

24

U08182 © Peter Lo 2010 24

Adequacy Criteria for Point inside Adequacy Criteria for Point inside
RectangleRectangle

Example

x
l

x
u

yl

yu

Integer coordinates

Inside_X = x>xl AND x<xu

Inside_Y = y>yl AND y<yu

Inside = Inside_X AND Inside_Y

Rectangle is (xl, yl, xu, yu), point is (x, y)

Rectangle region (xl+1, yl+1, xu-1, yu-1) is considered inside so returns TRUE

Other regions are either on the edge, or outside so return FALSE

Rationale for tests: E.g. x > xl could be miscoded in several ways. It is important
that this predicate returns F when x < xl, F when x = xl and T when x > xl

Similar for the other 3 predicates, so 3*4=12 (blue spot) tests

x any y expressions are linked by the AND so each of the 4: FF,FT,TF,TT
combinations needed. FT,TF and TT already considered but additional FF (red
spot) not needed as the result will be identical for AND or OR coding.

So full worst case robustness test combination is not needed (in this case)

25

U08182 © Peter Lo 2010 25

Performance Testing ExamplePerformance Testing Example

CPU time performance of C bubble program
where T = AN2

rainbow% /usr/bin/time ./sort 1000
user 0.1
rainbow% /usr/bin/time ./sort 2000
user 0.3
rainbow% /usr/bin/time ./sort 4000
user 1.5
rainbow% /usr/bin/time ./sort 8000
user 6.4
. . .
. . .

rainbow% /usr/bin/time ./sort 40000
bubble sort - N=40000
real 2:44.0
user 2:43.6
sys 0.0

Measure bubble sort CPU time bubble sort time complexity test

-2

-1

0

1

2

3

0 2 4 6

log N

lo
g

 T Series1

Slope=2 line added
to show agreement

Performance testing to confirm complexity behaviour

Douby nested loop (in bubble sort) leads to (Nsquared) behaviour

26

U08182 © Peter Lo 2010 26

Performance TestingPerformance Testing

Load Testing – Testing under realistic or worst case or
projected load conditions
Failure Testing – Test system, redundancy mechanisms in
the case of individual or multiple component failure
Soak Test – Run system at high load for extended period
Stress Test – Determine work load for system to fail (load
can be ramp, step or accelerated)
Benchmarking – Determine CPU memory or other system
statistic as a function of job size (benchmarking often used
for comparison purposes)
Volume Testing – Testing to assess transaction, message
or response rate)

27

U08182 © Peter Lo 2010 27

Random TestingRandom Testing

Random testing uses test data selected at random according
to a probability distribution over the input space

Representative random testing

The probability distribution use to sample the input data
represents the operation of the software, e.g. data
obtained in the operation of the old system or similar
systems

Non-representative random testing

The probability distribution has no-relationship with the
operation of the system

Advantages

• Reliability can be estimated especially when representative random testing
is used

• Low cost in the selection of test cases, which can be automated to a great
extent

• Can achieve a high fault detection ability

Disadvantages

• Less confidence can be obtained from the testing

• Still need to validate the correctness of output, which may be more difficult
than deliberately selected test cases.

28

U08182 © Peter Lo 2010 28

White Box Dynamic TestingWhite Box Dynamic Testing

Statement Coverage (every line)

Decision Coverage (every decision)

Structural Analysis (every control path)

Data Value Analysis (every data value)

Exhaustive testing implies testing to 100% coverage (and often required
in safety critical applications) but system complexity often makes this
ideal impractical, hence the need for alternative testing strategies.

E.g. 32 bit binary inputs tested at 1 test/ms will take 46 days, 40 bit
binary inputs tested at 1 test/ms will take 35 years

Statement coverage (every line) - aim is to create enough tests to
ensure every statement is executed at least once

Decision coverage (every decision) - aim is to generate tests to execute
each decision statement branch and module exit path. For example
provide tests to exercise both true and false branches in IF statements.
More rigorous than statement coverage

Structural analysis (every control path) - tests the complete program’s
structure. It attempts to exercise every entry-to-exit control path but in
large and complex programs the number of different control paths makes
this approach prohibitive. In this case statement and decision coverage
must be considered

Data value analysis (every data value) - Identify numerical problems:
entry of incorrect data type or value, divide by zero, overflow etc.

Exhaustive testing implies testing to 100% coverage (and often required in
safety critical applications) but system complexity often makes this ideal
impractical, hence the need for alternative testing strategies.

e.g. 40 bit binary inputs tested at 1 test/ms will take 35 years

29

U08182 © Peter Lo 2010 29

White Box Dynamic Testing ExampleWhite Box Dynamic Testing Example
e.g. If (A>1) AND (B=0)

C:=A
Else
C:=B

For a full structural analysis consider the IF statement branch including the two
predicate conditions. Consider true and false possibilities for each predicate.

4 tests as follows:

Test 4Test 3A<=1

Test 2Test 1A>1

B<>0B=0
Choose data values for each test

Test 1 A=2 B=0 Expected output C=A (=2)

Test 2 A=2 B=3 Expected output C=B (=3)

Test 3 A=-1 B=0 Expected output C=B (=0)

Test 4 A=-1 B=3 Expected output C=B (=3)

Forms
the
test
plan

30

U08182 © Peter Lo 2010 30

Functional TestingFunctional Testing

Derive test cases from the system or component (black box)
specification

Check for correctness by executing each system function
and examining the output or behaviour

Generally a black box approach is taken

Specification can be formal (e.g. Z, CSP etc.) or informal
(e.g. UML, natural language)

Required functions

Specified functions

Designed functions

Implemented functions

Are these equivalent?

Function:

• The relationship between the input and its output / behaviour

Domain (The input space)

• The set of valid input values

Codomain (The output space)

• The set of possible output values.

Dimension of domain

• The number of independent input variables

Boundary

• The lines/planes that specify the domain space when the inputs are in a
continuous data set

31

U08182 © Peter Lo 2010 31

The Process of Functional TestingThe Process of Functional Testing

Identification
of functions

Identification
of domain

Identification
of codomain

Analysis of
functions

Selection of
test cases

Decomposition
of functions

Identification of Functions
• What is the function to be tested?

Identification of Domain
• What is the input space for each function?
• What is the dimension of the input space?
• What are the boundaries for each function?

Identification of the Codomain
• What is the output space?

Analysis of the Function
• What is the relationship between the domain and codomain?
• Can it be decomposed into simpler functions?

Decomposition of the Function
• What are the components of the function?
• How are the components organised?

Selection of Test Cases
• What input data can prove or disprove that the software implements the

boundary correctly?
• What input data can prove or disprove that the software implements the

relationship correctly?

32

U08182 © Peter Lo 2010 32

Example: Discount InvoiceExample: Discount Invoice

A company produces two items, X and Y, with prices £5 for each X
purchased and £10 for each Y purchased. An order consists of a
request for a certain number of X's and a certain number of Y's.

The cost of the purchase is the sum of the costs of the individual items
discounted as follows:

If the total is greater than £200 a discount of 5% is given,

If the total is greater than £1000 a discount of 20% is given.

The company wishes to encourage sales of X and offers a further
discount of 10% if more than thirty X's are ordered.

Note: Only one discount rate will apply per order, and non-integer
final costs are rounded down to give an integer value, e.g. Int(3.6)
returns 3.

33

U08182 © Peter Lo 2010 33

Example: Problem AnalysisExample: Problem Analysis

Identification of Function
The function to be tested is the computation of the total invoice
amount for any given order

Identification of Domain
The input space consists of two inputs:

x: the number of product X ordered
y: the number of product Y ordered

Both inputs are non negative integers
Identification of Codomain

The output (sum) is an integer that represents the order cost in
pounds

Analysis of Functions
The relationship between the input and output is too complicated,
hence we need to decompose it into different cases!

34

U08182 © Peter Lo 2010 34

Example: DecompositionExample: Decomposition

Case 1: If inputs x and y have the property that (x≤ £30
and 5x+10y ≤ £200), the output should be 5x + 10y.

Case 2: If inputs x and y have the property that (x≤ £30
and 5x +10y >200), the output should be (5x + 10y)*0.95,
i.e. a 5% discount

Case 3: If inputs x and y have the property that (x>30 and
5x+10y ≤ £1000), the output should be (5x + 10y) less
10% discount

Case 4: If inputs x and y have the property that (5x+10y
>1000), the output should be (5x + 10y) less a 20%
discount

Case 1: If inputs x and y have the property that (x≤ £30 and 5x+10y ≤ £200), the
output should be 5x + 10y.

• Sub-function 1:

• Sub-Domain: A = {(x, y) | x ≤ £30, 5x+10y≤£200}

• Relationship: sum = 5x+10y

Case 2: If inputs x and y have the property that (x≤ £30 and 5x +10y >200), the
output should be (5x + 10y)*0.95, i.e. a 5% discount

• Sub-function 2:

• Sub-Domain: B = {(x, y) | x ≤ £30, 5x+10y>200}

• Relationship: sum = Int(0.95*(5x+10y))

Case 3: If inputs x and y have the property that (x>30 and 5x+10y ≤ £1000), the
output should be (5x + 10y) less 10% discount

• Sub-function 3:

• Sub-Domain: D and E = {(x, y) | x >30, 5x+10y ≤ £1000}

• Relationship: sum = Int(0.9*(5x+10y))

Case 4: If inputs x and y have the property that (5x+10y >1000), the output
should be (5x + 10y) less a 20% discount

• Sub-function 4:

• Sub-Domain: C and F = {(x, y) | 5x+10y>1000}

• Relationship: sum = Int(0.8*(5x+10y))

35

U08182 © Peter Lo 2010 35

Example: SubExample: Sub--DomainsDomains

36

U08182 © Peter Lo 2010 36

Definition of TerminologyDefinition of Terminology

On Test – The test case whose input is inside the sub-domain

Off Test – The test case whose input is outside the sub-domain

Shift Error – The implemented boundary is a parallel shift from the
correct boundary

Rotation Error – The implemented boundary is a rotation of the
correct boundary

On Test – The test case whose input is inside the sub-domain

Off Test – The test case whose input is outside the sub-domain

Shift Error – The implemented boundary is a parallel shift from the correct
boundary

Rotation Error – The implemented boundary is a rotation of the correct
boundary

37

U08182 © Peter Lo 2010 37

The Generic Testing ProcessThe Generic Testing Process

Test Planning

Test Specification

Test Execution

Test Results Recording

Test Evaluation

1. What to test

2. How to test

3. Record of tests

4. Test evaluation

Process Tasks

38

U08182 © Peter Lo 2010 38

Generic TestingGeneric Testing

test

harness

Code to
test

test

dataFor
each

test

test

results

Verification
of results

Report

Error/s

Testing
ok

As expectedNot as
expected

test

environment

39

U08182 © Peter Lo 2010 39

The Test Harness (Program)The Test Harness (Program)

Provides simulated test environment to apply the
required inputs and capture outputs for a module
under test.

Module
Under
Test

Test
Harness

inputs outputs

a separate test
harness is

required for each
module under test

Recall Test Driven
Development

The use of the test harness can be extended to the use of Simulators to provide
dynamic testing applied outside the operational environment (e.g. nuclear
shutdown system) , and particularly applied to safety critical systems. Note
accuracy of simulation will be limited by:

Comprehensiveness of environmental variables

Accuracy of system model and environmental factors

Accuracy of the dynamic behaviour

Therefore note that results will only be as good as the system model

40

U08182 © Peter Lo 2010 40

Test PlanTest Plan

A Test Plan for a module, component or system
will document:
Details of the part of the system being tested and
the objectives of testing, e.g. in relation to quality
standards
The general testing strategy:

Specify the test methods, testing evaluation
criteria

Date, location and individual/s undertaking the
testing

For each test, include:

•Details and purpose of test (what program/module, what level of
testing)

•Test data input and expected output (how to test)

•How the test data is to be prepared and submitted too the system

•How the outputs are to be captured (record raw test output)

•How the results will be analysed (test results)

•Any other operational procedures

The test plan forms an integral part of the software life cycle design process

41

U08182 © Peter Lo 2010 41

Test Harness, Stub and Test ScriptTest Harness, Stub and Test Script

Test Harness
A program written to call the code to be tested, such as
a procedure, function or a module of program. The
objective is to test the code in isolation.

Stub
A piece of program code written to replace the modules
or procedures that the program under test depends on
and calls so that it can be executed.

Test Script
Some test tools can support the generation of such code,
but the tester may need to describe the environment.
Such description is usually called test script.

42

U08182 © Peter Lo 2010 42

Dynamic Testing: Record of TestingDynamic Testing: Record of Testing

Full details of each test should be recorded (e.g. as a UNIX
script file)

Component under Test

Data/System Setup

Expected Results

User input

Test: abc123
Mod: ValDate (Date Validation Module)
Source: DATETIME.COB

Purpose: Leap Year checking
Covers: 29/2/ccnn where cc is 19 or 20
and nn is 00 - 99

Setup:None

To Run:Enter 'abc123‘
Results:'abc123: Passed' on success

otherwise details of failure

Cases Covered

Purpose of Test

43

U08182 © Peter Lo 2010 43

Test Plan Document LayoutTest Plan Document Layout

Introduction

Requirements Identification

Test Plan / Procedures (overall discussion of
testing strategy)

Test Results

Traceability Matrix

Introduction

• Summary from requirements specification

Requirements Identification

• Taken from requirements specification verification section

• Identifies what aspects are to be tested

Test Plan / Procedures (overall discussion of testing strategy)

• Develop a minimum number of tests which cover all the
requirements

• Each case (scenario) requires details of the hardware and software
setup, input required together with the expected behavior/output and
how this can be observed.

• The use case documentation can form the basis for this

Test Results

• Table listing test scenarios, software version, results observed,
signature of observer

Traceability Matrix

• Relate each requirement scenario to the test result evidence

44

U08182 © Peter Lo 2010 44

Design Test CasesDesign Test Cases

List test cases

Give priority to each test case

Identify input, output and environments for each
test case

List test cases

• For each function (use case) check the scenarios

• Each generic scenario forms a test case

Give priority to each test case

• Consider the priority of the function

• Further take into account the following aspects:

• frequency of the occurrences of the scenario in the use case

• possible errors in the scenario

• consequences of the errors

Identify input, output and environments for each test case

• Check the scenario description

• Find the input/output variables and the data needed to be stored in
the system

45

U08182 © Peter Lo 2010 45

The Clinic Example: The Clinic Example: Developing Test Plan Developing Test Plan
from Use Casesfrom Use Cases

Cancel
appointment

Check
patient record

Patient

Manage
appointments

Scheduler

Request
medication

Update
patient record

Make
appointment

Doctor

Clinic

46

U08182 © Peter Lo 2010 46

The Clinic Example: Make The Clinic Example: Make
Appointment FunctionAppointment Function

8) Add to appointments list.7) Confirms acceptance of
appointment

6) Confirms appointment and
displays information about parking
etc

5) Selects preferred time

4) Displays available appointments3) Selects date

2) After confirming this is a
registered patient, display days the
doctor is in the clinic

1) Patient enters their own name
and their preferred doctor’s name

SystemActor

The Clinic Example: Make Appointment Function

• Input:

• Patient name, preferred doctor’s name, date, time, confirmation

• Output:

• available dates of a doctor, available times

• Stored information:

• available dates of a doctor, available times

• Appointment detail

47

U08182 © Peter Lo 2010 47

The Clinic ExampleThe Clinic Example

Concrete Scenario Description of making
appointment

8) Appointment confirmed7) John confirms the acceptance of
appointment

6) Confirms appointment and displays information
about parking etc

5) John selects 10:30am

4) Displays available appointment, which is 10:30am,
12:00am, and 3:00pm.

3) John selects Monday

2) confirmed John is a registered patient, displays days
the doctor is in the clinic, which is Monday and
Wednesday.

1) Patient John enters his name and
preferred doctor, Dr Walker

SystemActor

Selection of Test Data

• Generate test data from each concrete scenario

• Identify the values in the concrete scenario for each variable of the
corresponding generic scenario

• Set the environment variables as the values of the concrete scenario

• List values for input variables

• List expected values for output variables

48

U08182 © Peter Lo 2010 48

Derivation of Test Data: The Clinic Derivation of Test Data: The Clinic
ExampleExample

Test data derived from the concrete scenario

10:30am, 12:00am, 3:00pmavailable times

Monday, Wednesdayavailable datesStored info.

10:30am, 12:00am, 3:00pmavailable times

Monday, Wednesdayavailable datesExpected Output

Trueconfirmation

10:30amtime

Mondaydate

Walkerdoctor’s name

Johnpatient nameInput

Test Data 1Variable

49

U08182 © Peter Lo 2010 49

Analysis of Risks: Analysis of Risks: The Clinic ExampleThe Clinic Example

Very highWrong record stored

Very HighCause anxiety

Error in treatment

Lost of recordUpdate patient
record

HighLeak private information Displayed other patient’s
record

Very HighCause anxiety

Error in treatment

Wrong record displayed Check patient
record

High……Request
medicine

Medium……Manage
appointment

Low……Cancel
appointment

MediumInefficiency for doctorsNo booking on available
time

MediumPatient inconvenience Double bookingMake
appointment

PriorityConsequencesPossible errorsFunction

Test Planning: Risk Analysis

• List all functions to be tested

• Check the use case diagram

• Each use case is a function to be tested

• Analyse the risk of each function

• Possible errors

• The frequency of the use case to be used

• Consequences of any occurrence of an error

• Give priorities to the functions

• The server the consequence or the heavier loss the higher priority

• The more frequently used use cases the higher priority

50

U08182 © Peter Lo 2010 50

Testing UnitsTesting Units

A test unit can be:

An instruction (machine, assembly, high level, …)

A feature (from the requirements spec or users guide)

A class

A group of classes (a cluster)

A library

An ADT

A program

A set (or suite) of programs

51

U08182 © Peter Lo 2010 51

Traditional & Traditional & Object Oriented Object Oriented UnitUnit

Traditional (Structured) units are module, function,
procedure etc

Object oriented (encapsulated data + operations)
units are Classes.

Note with inheritance operations must be tested
for each instance, e.g. shape cannot be tested
unless circle, rectangle, triangle etc are also
tested.

52

U08182 © Peter Lo 2010 52

Integration Testing Integration Testing

Systematic approach to testing modular systems

STUB

STUB

Main
Program

Module

DRIVER

Module Module

Module

Bottom UpTop Down

dummy
main

program

dummy
module

Integration Testing – In Practice

• Test several units as a system or sub-system

• May be several code authors, teams or organisations involved

• Hierarchical test approach top down or bottom up

53

U08182 © Peter Lo 2010 53

Integration Strategies: TopIntegration Strategies: Top--Down Down
StrategyStrategy

A

B C D

E F

G

H

A

B C D

A

B C D

E F H

A

B C D

E F

54

U08182 © Peter Lo 2010 54

A

B C D

E F

G

H

F

G

H

D

F

G

H

B D

E F

G

H

Integration Strategies:Integration Strategies: BottomBottom--Up Up
StrategyStrategy

55

U08182 © Peter Lo 2010 55

Regression TestingRegression Testing

Does it still work, after the modification?

Tests System

Modified
System

Compare
Results

Testing applied
repeatedly during

system development
or modification

before

after

56

U08182 © Peter Lo 2010 56

Dynamic Testing: Adequacy and Dynamic Testing: Adequacy and
TestabilityTestability

Adequacy – level of confidence in the testing
applied to a system.

The adequacy criteria can be requirements
based (i.e. black box tested) or structure based
(i.e. white box tested)

Different adequacy criteria for systems of
different degrees of criticality

Typically these specify 100% coverage for
testing related to the system safety requirements

57

U08182 © Peter Lo 2010 57

Dynamic Testing: Adequacy and Dynamic Testing: Adequacy and
TestabilityTestability

Design for Testability
Design approach that considers later ease of
testing, (some systems cannot be tested)
Testability approaches: Ad hoc - testing is
considered after the design or Built in test -
testing is an integral part of the system design
Controllability, the ability to input (or control)
signals to set the system into a particular state
Observability, the ability to examine (observe)
the system status from the external outputs

58

U08182 © Peter Lo 2010 58

Testability Principles Testability Principles

Good developers design with testability in mind

Operability

Observability

Controllability

Decomposability

Simplicity

Stability

Understandability

Operability

• The better it works, the more efficiently it can be tested

Observability

• What you see is what you test

Controllability

• The better we can control the software, the more the testing can be
automated and optimized

Decomposability

• By controlling the scope of testing, we can more quickly isolate
problems and perform smarter re-testing

Simplicity

• The less there is to test, the more quickly we can test it

Stability

• The fewer the changes, the fewer the disruptions to testing

Understandability

• The more information we have, the smarter we will test

59

U08182 © Peter Lo 2010 59

SummarySummary

Testing is a vital part of system development
Applies equally to hardware and software
Contributes to overall system quality
Reduces risk (for developers and users)
Testing cost typically 25-50+% of software development
costs (usually recorded as maintenance)
Not all software aspects testable with same ease (some
easy, some difficult/impracticable)
Good systems testing staff are essential
Good organisation and documentation is vital
There are commercial CASE tools available that can help
in many situations

