

Excel VBA Programming (Level II) @ Peter Lo 2019 1

1. Macro

1.1 Overview

If you perform a task repeatedly in Microsoft Excel, you can automate the task with a macro. A macro

is a series of commands and functions that are stored in a Microsoft Visual Basic module and can be

run whenever you need to perform the task. For example, if you often enter long text strings in cells,

you can create a macro to format those cells so that the text wraps.

1.2 Enable Developer Tab in Ribbon

1. Click the Microsoft Office Button, and then click Excel Options.

2. Click Popular, and then select the Show Developer tab in the Ribbon check box, and press

[OK] to confirm.

3. The Developer tab will be enabled.

Excel VBA Programming (Level II) @ Peter Lo 2019 2

1.3 Recording Macro

1.3.1 Record Macro using Macro Recorder

When you record a macro, Excel stores information about each step you take as you perform a series

of commands. You then run the macro to repeat, or play back, the commands. If you make a mistake

when you record the macro, corrections you make are also recorded. Visual Basic stores each macro

in a new module attached to a workbook.

1. Select Developer tab, Code Group, Record Macros

2. Perform the following action in the Record Macro dialog box.

· In the Record Macro dialog box, enter a name in the Macro Name box

· If you want to run the macro by pressing a keyboard shortcut key, enter a letter in the

Shortcut key box. The shortcut key will override any equivalent default Excel shortcut

keys while the workbook that contains the macro is open

· In the Store macro in box, click the location where you want to store the macro. If you

want a macro to be available whenever you use Excel, select Personal Macro Workbook.

· If you want to include a description of the macro, type it in the Description box.

· Click [OK]. If you want the macro to run relative to the position of the active cell, record

it using relative cell references. On the Stop Recording toolbar, click Relative Reference

so that it is selected. Excel will continue to record macros with relative references until you

quit Microsoft Excel or until you click Relative Reference again, so that it is not selected.

3. Carry out the actions you want to record.

4. Select View tab, Code Group, Stop Macro when finish the record.

Excel VBA Programming (Level II) @ Peter Lo 2019 3

1.3.2 Create Macro using Visual Basic Editor

1. Select Developer tab, Code Group, Visual Basic

2. Select the Insert Č Module in the Microsoft Visual Basic Editor.

3. Type or copy your code into the code window of the module.

4. If you want to run the macro from the module window, press [F5].

5. When you're finished editing, click File Č Close and Return to Microsoft Excel.

1.4 Executing Macro

The next time you need to flag a cell, you can run the macro. If you're going to use the macro

frequently, you can create a toolbar button for it, or assign a keystroke for it, or both.

1.4.1 Running Macro using Tools Menu

1. Select View tab, Code Group, Macros to call the Macro dialog box.

2. Click the name of your macro, and then click Run.

Excel VBA Programming (Level II) @ Peter Lo 2019 4

1.4.2 Create Toolbar Button for Runing Macro

1. Click the Microsoft Office Button, and then click Excel Options, and in the Quick Access

Toolbar tab.

2. Select Macros in the Choose command from

3. Select the macro you want to assign and press the Add button, and then click [OK].

1.4.3 Assign Keystroke for Running Macro

1. Click the worksheet, and then select Developer tab, Code Group, Macro.

2. Select the name of your macro, and then click [Options].

3. In the Shortcut key box, type the key to use along with [Ctrl] button to run your macro.

1.5 Managing Macros

After you record a macro, you can view the macro code with the Visual Basic Editor to correct errors

or change what the macro does. For example, if you wanted the text-wrapping macro to also make

the text bold, you could record another macro to make a cell bold and then copy the instructions from

that macro to the text-wrapping macro.

The Visual Basic Editor is a program designed to make writing and editing macro code easy for

beginners and provides plenty of online Help. You don't have to learn how to program or use the

Visual Basic language to make simple changes to your macros. With the Visual Basic Editor, you can

edit macros, copy macros from one module to another, copy macros between different workbooks,

and rename the modules that store the macros, or rename the macros.

Excel VBA Programming (Level II) @ Peter Lo 2019 5

1.6 Macro Security

In Microsoft Office Excel, you can change the macro security settings to control which macros run

and under what circumstances when you open a workbook. For example, you might allow macros to

run based on whether they are digitally signed by a trusted developer.

1.6.1 Macro Security Settings and their Effects

The following list summarizes the various macro security settings. Under all settings, if antivirus

software that works with 2007 Microsoft Office system is installed and the workbook contains macros,

the workbook is scanned for known viruses before it is opened.

· Disable all macros without notification. Click this option if you don't trust macros. All macros

in documents and security alerts about macros are disabled. If there are documents that contain

unsigned macros that you do trust, you can put those documents into a trusted location.

Documents in trusted locations are allowed to run without being checked by the Trust Center

security system.

· Disable all macros with notification. This is the default setting. Click this option if you want

macros to be disabled, but you want to get security alerts if there are macros present. This way,

you can choose when to enable those macros on a case by case basis.

· Disable all macros except digitally signed macros. This setting is the same as the Disable all

macros with notification option, except that if the macro is digitally signed by a trusted publisher,

the macro can run if you have already trusted the publisher. If you have not trusted the publisher,

you are notified. That way, you can choose to enable those signed macros or trust the publisher.

All unsigned macros are disabled without notification.

· Enable all macros (not recommended, potentially dangerous code can run). Click this option

to allow all macros to run. Using this setting makes your computer vulnerable to potentially

malicious code and is not recommended.

· Trust access to the VBA project object model. This setting is for developers and is used to

deliberately lock out or allow programmatic access to the VBA object model from any

Automation client. In other words, it provides a security option for code that is written to

automate an Office program and programmatically manipulate the VBA environment and object

model. This is a per user and per application setting, and denies access by default. This security

option makes it more difficult for unauthorized programs to build "self-replicating" code that can

harm end-user systems. For any Automation client to be able to access the VBA object model

programmatically, the user running the code must explicitly grant access. To turn on access,

select the check box.

Excel VBA Programming (Level II) @ Peter Lo 2019 6

1.6.2 Change Macro Security Settings

You can change macro security settings in the Trust Center, unless a system administrator in your

organization has changed the default settings to prevent you from changing the settings.

1. On the Developer tab, in the Code group, click Macro Security.

2. In the Macro Settings category, under Macro Settings, click the option that you want. Any

changes that you make in the Macro Settings category in Excel apply only to Excel and do not

affect any other Microsoft Office program.

Excel VBA Programming (Level II) @ Peter Lo 2019 7

2. Visual Basic Editor

2.1 Introduction to Visual Basic Editor

The Visual Basis Editor is the workspace for creating VBA code. The editor can be accessed through

your Developer Tab or by using the shortcut [Alt] + [F11]. The editor will display in a completely

separate window than your Office Application and each one of the programs in the Office Suite has

its own VBA Editor

There are several main areas in the VBA Editor:

· Project Explorer

· Code Window

· Immediate Window

· Watch Window

· Properties Window

This is what is known as an Integrated Development Environment (which means everything you

need to write programs and code are all in this one window)

Excel VBA Programming (Level II) @ Peter Lo 2019 8

2.2 Using the Visual Basic Editor

The Visual Basic Editor is a powerful tool that lets you extend the power and versatility of macros

beyond anything that can be done through recording alone.

2.2.1 Name of Macro

The basic macro is made up of three parts, its name, description and code. Every macro must have

the keyword ñSubò before whatever you decide to name your macro and open and close parenthesis

after. If you wanted to name your macro Hello_World, then the first line on your macro will be Sub

Hello_World().

2.2.2 Macro Description

The description is in green because it is a comment section. Any part of a macro that is commented

out will be ignored when the macro is actually run, so you can type anything you want there.

To comment out a section, all you need to do is add a single quote before the line you want to comment

ó. You are then able to comment on anything you would like. Comments can be put anywhere within

the macro code.

2.2.3 Code for Macro

The actual code is what the macro will be doing when you tell it to run. Anything you type in the

section will be attempted to be run by the macro, so if you type something incorrectly that the macro

doesnôt understand, it will give you an error to debug. Over the next few posts we will be looking at

some commands we can give the visual basic editor to make it do what we want.

2.2.4 End of Macro

After the code is complete you have to end the macro with the line End Sub. This just lets the macro

know that it has reached the end of the executable code and its job is complete.

Excel VBA Programming (Level II) @ Peter Lo 2019 9

2.2.5 Example

Below is the example for creating an sample Macro program using VBA:

1. Start Excel and open a new, blank workbook.

2. Select Developer tab, Code Group, Visual Basic.

3. In the Project window, double-click ThisWorkbook.

4. Enter this code into the code window:

sub test()

 MsgBox "This is only a test."

end sub

5. Save the file and then select File Č Visual Basic Editor and close the workbook.

6. Select Developer tab, Code Group, Macros in the Excel worksheet. Then select the previous

macro ñtextò we created in the Visual Basic Editor.

7. Press [Run] to execute the macro and a message box will be displayed.

Excel VBA Programming (Level II) @ Peter Lo 2019 10

3. Working with Excel VBA Control

3.1 Overview

The main objects used to help a person interact with the computer are Windows controls. There are

two main ways you can access these objects when working with Microsoft Excel. If you are working

in Microsoft Excel, you can add or position some Windows controls on the document. To do that, on

the Ribbon, click Developer. In the Control section, click Insert.

This would display the list of controls available in Microsoft Excel. The controls appear in two

sections: Form Controls and ActiveX Controls. If you are working on a spreadsheet in Microsoft

Excel, you should use only the controls in the ActiveX Controls section. If you are working on a form

in Microsoft Visual Basic, a Toolbox equipped with various controls will appear.

3.2 Using Additional Objects

The Developer tab of the Ribbon in Microsoft Excel provides the most regularly used controls. These

controls are enough for any normal spreadsheet you are developing. Besides these objects, other

controls are left out but are still available. To use one or more of these left out controls, in the Controls

section of the Ribbon, click Insert and click the More Controls button. This would open the More

Controls dialog box. You can scroll up and down in the window to locate the desired control. If you

see a control you want to use, click it and click [OK].

Excel VBA Programming (Level II) @ Peter Lo 2019 11

3.3 Form Controls

Form controls are the original controls that are compatible with earlier versions of Excel, starting

with Excel version 5.0. Form controls are also designed for use on XLM macro sheets. You use Form

controls when you want to easily reference and interact with cell data without using VBA code, and

when you want to add controls to chart sheets. For example, after you add a list box control to a

worksheet and linking it to a cell, you can return a numeric value for the current position of the

selected item in the control. You can then use that numeric value in conjunction with the INDEX

function to select different items from the list.

You can also run macros by using Form controls. You can attach an existing macro to a control, or

write or record a new macro. When a user of the form clicks the control, the control runs the macro.

However, these controls cannot be added to UserForms, used to control events, or modified to run

Web scripts on Web pages.

Icon Name Example Description

 Label

Identifies the purpose of a cell or text box, or displays

descriptive text (such as titles, captions, pictures) or brief

instructions.

 Group

box

Groups related controls into one visual unit in a rectangle with

an optional label. Typically, option buttons, check boxes, or

closely related contents are grouped.

 Button

Runs a macro that performs an action when a user clicks it. A

button is also referred to as a push button.

 Check

Box

Turns on or off a value that indicates an opposite and

unambiguous choice. You can select more than one check box

on a worksheet or in a group box. A check box can have one

of three states: selected (turned on), cleared (turned off), and

mixed, meaning a combination of on and off states (as in a

multiple selection).

Excel VBA Programming (Level II) @ Peter Lo 2019 12

Icon Name Example Description

 Option

Button

Allows a single choice within a limited set of mutually

exclusive choices; an option button is usually contained in a

group box or a frame. An option button can have one of three

states: selected (turned on), cleared (turned off), and mixed,

meaning a combination of on and off states (as in a multiple

selection). An option button is also referred to as a radio

button.

 List Box

Displays a list of one or more items of text from which a user

can choose. Use a list box for displaying large numbers of

choices that vary in number or content. There are three types

of list boxes:

A single-selection list box enables only one choice. In this

case, a list box resembles a group of option buttons, except

that a list box can handle a large number of items more

efficiently.

A multiple-selection list box enables either one choice or

contiguous (adjacent) choices.

An extended-selection list box enables one choice, contiguous

choices, and noncontiguous (or disjointed) choices.

 Combo

Box

Combines a text box with a list box to create a drop-down list

box. A combo box is more compact than a list box but requires

the user to click the down arrow to display the list of items.

Use a combo box to enable a user to either type an entry or

choose only one item from the list. The control displays the

current value in the text box, regardless of how that value is

entered.

 Scroll Bar

Scrolls through a range of values when you click the scroll

arrows or drag the scroll box. In addition, you can move

through a page (a preset interval) of values by clicking the

area between the scroll box and either of the scroll arrows.

Typically, a user can also type a text value directly into an

associated cell or text box.

 Spin

Button

Increases or decreases a value, such as a number increment,

time, or date. To increase the value, click the up arrow; to

decrease the value, click the down arrow. Typically, a user can

also type a text value directly into an associated cell or text

box.

Excel VBA Programming (Level II) @ Peter Lo 2019 13

3.4 ActiveX controls

ActiveX controls can be used on worksheet forms, with or without the use of VBA code, and on VBA

UserForms. In general, use ActiveX controls when you need more flexible design requirements than

those provided by Form controls. ActiveX controls have extensive properties that you can use to

customize their appearance, behavior, fonts, and other characteristics.

You can also control different events that occur when an ActiveX control is interacted with. For

example, you can perform different actions, depending on which choice a user selects from a list box

control, or you can query a database to refill a combo box with items when a user clicks a button. You

can also write macros that respond to events associated with ActiveX controls. When a user of the

form interacts with the control, your VBA code then runs to process any events that occur for that

control.

Your computer also contains many ActiveX controls that were installed by Excel and other programs,

such as Calendar Control 12.0 and Windows Media Player.

Icon Name Example Description

 Check Box

Turns on or off a value that indicates an opposite and

unambiguous choice. You can select more than one check

box at a time on a worksheet or in a group box. A check

box can have one of three states: selected (turned on),

cleared (turned off), and mixed, meaning a combination of

on and off states (as in a multiple selection).

 Text Box

Enables you to, in a rectangular box, view, type, or edit text

or data that is bound to a cell. A text box can also be a static

text field that presents read-only information.

 Command

Button

Runs a macro that performs an action when a user clicks

it. A command button is also referred to as a push button.

 Option

Button

Allows a single choice within a limited set of mutually

exclusive choices usually contained in a group box or

frame. An option button can have one of three states:

selected (turned on), cleared (turned off), and mixed,

meaning a combination of on and off states (as in a

multiple selection). An option button is also referred to as

a radio button.

Excel VBA Programming (Level II) @ Peter Lo 2019 14

Icon Name Example Description

 List Box

Displays a list of one or more items of text from which a

user can choose. Use a list box for displaying large

numbers of choices that vary in number or content. There

are three types of list boxes:

· A single-selection list box enables only one choice.

In this case, a list box resembles a group of option

buttons, except that a list box can handle a large

number of items more efficiently.

· A multiple selection list box enables either one

choice or contiguous (adjacent) choices.

· An extended-selection list box enables one choice,

contiguous choices, and noncontiguous (or

disjointed) choices.

 Combo Box

Combines a text box with a list box to create a drop-down

list box. A combo box is more compact than a list box, but

requires the user to click the down arrow to display the list

of items. Use to allow a user to either type an entry or

choose only one item from the list. The control displays

the current value in the text box, regardless of how that

value is entered.

 Toggle

button

Indicates a state, such as Yes/No, or a mode, such as

On/Off. The button alternates between an enabled and

disabled state when it is clicked.

 Spin Button

Increases or decreases a value, such as a number

increment, time, or date. To increase the value, click the up

arrow; to decrease the value, click the down arrow.

Typically, a user can also type a text value into an

associated cell or text box.

 Scroll Bar

Scrolls through a range of values when you click the scroll

arrows or drag the scroll box. In addition, you can move

through a page (a preset interval) of values by clicking the

area between the scroll box and either of the scroll arrows.

Typically, a user can also type a text value directly into an

associated cell or text box.

Excel VBA Programming (Level II) @ Peter Lo 2019 15

Icon Name Example Description

 Label

Identifies the purpose of a cell or text box, displays

descriptive text (such as titles, captions, pictures), or

provides brief instructions.

 Image

Embeds a picture, such as a bitmap, JPEG, or GIF.

 Frame

Control

A rectangular object with an optional label that groups

related controls into one visual unit. Typically, option

buttons, check boxes, or closely related contents are

grouped in a frame control.

Note: The ActiveX frame control is not available in the

ActiveX Controls section of the Insert command. However,

you can add the control from the More Controls dialog box

by selecting Microsoft Forms 2.0 Frame.

 More

Controls

 Displays a list of additional ActiveX controls available on

your computer that you can add to a custom form, such as

Calendar Control 12.0 and Windows Media Player. You

can also register a custom control in this dialog box.

Excel VBA Programming (Level II) @ Peter Lo 2019 16

4. Interactive with User

4.1 Using Message box and Input box

There are many built-in functions available in Excel VBA which we can use to streamline our VBA

programs. Among them, message box and input box are most commonly used. These two functions

are useful because they make the Excel VBA macro programs more interactive. The input box allows

the user to enter the data while the message box displays output to the user.

4.2 The MsgBox () Function

The objective of the MsgBox function is to produce a pop-up message box and prompt the user to

click on a command button before he or she can continue. The code for the message box is as follows:

4.2.1 Style Values

The Style Value determines what type of command button that will appear in the message box.

Moreover, to make the message box looks more sophisticated, you can add an icon beside the message.

Style Values

Message Icon

Excel VBA Programming (Level II) @ Peter Lo 2019 17

4.2.2 Returned Values

4.2.3 Example

You can use the following code to display a message box with icon and button.

Sub MsgBoxDemo()

 Dim ReturnValue As VbMsgBoxResult

 ReturnValue = MsgBox("Hello World", vbOKCancel + vbExclamation, "New Title")

 Worksheets(1).Range("A1").Value = ReturnValue

End Sub

4.3 The InputBox() Function

An InputBox() is a function that displays an input box where the user can enter a value or a message

in the form of text. The format is:

myMessage = InputBox(Prompt, Title, default_text, x-position, y-position)

myMessage is a variant data type but typically it is declared as a string, which accepts the message

input by the users. The arguments are explained as follows:

¶ Prompt ï The message displayed in the inputbox.

¶ Title ï The title of the Input Box.

¶ Default_text ï The default text that appears in the input field where users can use it as his intended

input or he may change it to another message.

¶ x-position and y-position ïThe position or the coordinates of the input box.

Excel VBA Programming (Level II) @ Peter Lo 2019 18

4.3.1 Example

You can use the following code to obtain user input

Sub InputBoxDemo()

 Dim UserInput As String

 UserInput = InputBox ("What is your message?", "Message Entry Form", _

 "Enter your message here", 500, 700)

 Worksheets(1).Range("A1").Value = UserInput

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 19

5. Programming Variables

5.1 Variables

5.1.1 Declare and Assign Variables

In computer programming, you use a variable to store things in memory, so that you can retrieve them

later for manipulation. Variables have a name and a data type. In VBA you can declare and set up

your variable with key word Dim.

Dim MyNumber As Integer

This code sets up a variable with the name MyNumber. The type of variable is an integer. The Dim

keyword goes at the start, and tells the programme to set up a variable of this name and type. However,

there's nothing stored inside of the MyNumber variable. VBA has just allocated the memory at this

point. To store something inside of a variable, you use the equal sign (=), also known as the

assignment operator. To store a value of 10, say, inside of the variable called MyNumber, you do it

like this:

MyNumber = 10

The above line reads, "Assign a value of 10 to the variable called MyNumber". So the name of your

variable comes first, then the equal sign. After the equal sign you type the value that you want to store

inside of your variable.

5.1.2 Common Data Type

Data Type Symbol Length Detail

Integer % 2 -32,768 to 32767

Long & 4 -2,147,483,648 to 2,147,483,647

Currency @ 8 -922,337,203,685,477.5808 to

922,337,203,685,477.5807

Single ! 4 -3.402823E38 to 1.401298E45

Double # 8 -1.79769313486232E308 to -

4.94065645841247E-324,

4.94065645841247E-324 to

1.79769313486232E308

String $ Varies according to the number of characters

(1 per character)

Byte 2 Whole number between 0 and 255.

Date 8 1 January 1000 to 31 December 9999

Boolean 2 True or False

Excel VBA Programming (Level II) @ Peter Lo 2019 20

5.1.3 Variable Names

You can call your variable anything you like with the following guideline:

¶ Cannot start a variable name with a number

¶ Cannot have spaces in your variable names, or full stops (periods)

¶ Cannot use any of the following characters: !, %, ?, #, $

¶ Variable name must be less than 255 characters

Examples of valid and invalid variable names:

Valid Name Invalid Name

My_Car My.Car (. is not acceptable)

ThisYear 1NewBoy (Cannot start with number)

Long_Name_Can_beUSE He&HisFather (& is not acceptable)

Group88 Student ID (Spacing not allowed)

5.2 Option Explicit

The use of Option Explicit is to help us to track errors in the usage of variable names within a program

code. Option Explicit forces the programmer to declare all the variables using the Dim keyword.

When Option Explicit is included in the program code, we have to declare all variables with the Dim

keyword. Any variable not declared or wrongly typed will cause the program to popup the ñVariable

not definedò error message. We have to correct the error before the program can continue to run.

5.2.1 By Configuration

Select Tools Č Options and make sure the "Require Variable Declaration" is checked. Selecting this

check box will automatically add the statement Option Explicit to any new modules (not existing

ones). This ensures that a program will not run if it contains any variables that have not been explicitly

declared.

Excel VBA Programming (Level II) @ Peter Lo 2019 21

5.2.2 By Programming

Whenever the Option Explicit statement is found within a module, you're prevented from executing

VBA code containing undeclared variables. The Option Explicit statement just needs to be used once

per module. In other words:

· You only include 1 Option Explicit statement per module.

· If you're working on a particular VBA project that contains more than 1 module, you must

have 1 Option Explicit statement in each module.

5.2.2.1 Example

Compile Error will be prompted if variable havenôt decelerated before use under Option Explicit.

Option Explicit

Sub OptionExplicit Demo()

 Dim var1 As String

 var2 = var1

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 22

5.3 Variable Scope

The scope of a variable in Excel VBA determines where that variable may be used. You determine

the scope of a variable when you declare it. There are four levels of Scope:

Here is the Pictorial Representation of the Scope of the Variables

Excel VBA Programming (Level II) @ Peter Lo 2019 23

5.3.1 Procedure-Level Scope

A local or procedure level variable is declared inside an individual procedure or function and is not

visible outside that subroutine. Local variables can only be used in the procedure in which they are

declared in. When the procedure or function ends the variable is automatically removed and the

memory is released. You can use the Dim, Static or Private statement within a subroutine or function.

The most common way to declare a local variable is to use the Dim statement between the Sub and

End Sub statements. One of the great advantages of local variables is that we can use the same name

in different subroutines without any conflicts.

5.3.2 Module-Level Scope

All Procedure-Level variables are accessible only within the Module in which they are declared.

These are variables that are declared outside the Procedure itself at the very top of any Module. Its

value is retained unless the Workbook closes or an End Statement is used.

5.3.3 Project-Level Scope

We set Project -Level Scope to the variables if we want to make the public variable to be accessed

only in the project in which they are declared and not outside of this project. To set this option we

need to add ñOption Private Moduleò statement at the top of the declaration area.

5.3.4 Global-Level Scope

All Global-Level variables are accessible in anywhere in the Project (.i.e; in any Module, User Form,

Classes) within the Workbook in which they are declared. And also accessible to outside of this

project or workbook. These are variables that are declared using óPublicô keyword at the very top of

any Public Module.

Excel VBA Programming (Level II) @ Peter Lo 2019 24

6. Arithmetic Operation

6.1 Overview

When you store numbers inside of variables, one of the things you can do with them is mathematical

calculations. The arithmetic precedence is as follow:

6.2 Addition

In programing languages, the addition sign is the plus (+).

Sub Add_Numbers ()

 Dim Number_1 As Integer

 Dim Number_2 As Integer

 Number_1 = 10

 Number_2 = 20

 Worksheets(1).Range("A1").Value = "Addit ion Answer"

 Worksheets(1).Range("B1").Value = Number_1 + Number_2

End Sub

6.3 Subtraction

In the VBA programming language, the minus sign (-) is used to subtract one value from another.

Again, you can use actual values, values stored in variables, or a combination of the two.

Sub Subtract _Numbers ()

 Dim Number_1 As Integer

 Dim Number_2 As Integer

 Number_1 = 10

 Number_2 = 20

 Worksheets(1).Range("A2 ").Value = " Subtract Answer"

 Worksheets(1).Range("B2 ").Value = Number_1 - Number_2

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 25

6.4 Multiplication

In programing languages, the multiplication sign is the asterisk (*). So if you want to multiply 10 by

5 in VBA you could do it like this:

Sub Multiply_Numbers ()

 Dim Number_1 As Integer

 Dim Number_2 As Integer

 Number_1 = 10

 Number_2 = 5

 Worksheets(1).Range("A3").Value = "Multiplication Answer"

 Worksheets(1).Range("B3").Value = Number_1 * Number_2

End Sub

6.5 Division

The symbol to use when you want to divide numbers is the forward slash (/).

Sub Divide _Numbers ()

 Dim Number_1 As Integer

 Dim Number_2 As Integer

 Number_1 = 10

 Number_2 = 5

 Worksheets(1).Range("A4").Value = "Division Answer"

 Worksheets(1).Range("B4").Value = Number_1 / Number_2

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 26

7. The Selection Structure

7.1 Overview

Also called the decision structure, makes a decision and then takes appropriate action based on that

decision.

7.2 If Statement

To effectively control the program flow, we shall use the If...Then...Else statement together with the

conditional operators and logical operators. The general format for the statement is as follows:

If condition1 Then

 Statement1

ElseIf condition2 Then

 Statement2

Else

 Statement3

End If

* Any If...Then...Else statement must end with End If. Sometime it is not necessary to use Else.

7.2.1 Relational Operators

Excel VBA Programming (Level II) @ Peter Lo 2019 27

7.2.2 Logical Operators

7.2.3 Order of Operation

The order of operations for evaluating Boolean expressions is:

1. Arithmetic Operators

¶ Parenthesis

¶ Exponentiation

¶ Division and multiplication

¶ Addition and subtraction

2. Relational Operators

3. Logical Operators

¶ Not

¶ And

¶ Or

7.2.4 Example
Sub IfThenElseDemo()

 If Weekday(Now(), 2) = 6 Or Weekday(Now(), 2) = 7 Then

 MsgBox ("Enjoy your Weekend!")

 Else

 MsgBox ("Work hard!")

 End If

End Sub

The program will prompt up ñEnjoy your weekend!ò on Saturday and Sunday, and display

ñWork hard!ò on other days.

Excel VBA Programming (Level II) @ Peter Lo 2019 28

7.3 Select Case.........End Select

Normally it is sufficient to use the conditional statement If....Then....Else for multiple options or

selections programs. However, if there are too many different cases, the If...Then...Else structure

could become too bulky and difficult to debug if problems arise. Fortunately, Visual Basic provides

another way to handle complex multiple choice cases, that is, the Select Case.....End Select decision

structure. The general format of a Select Case...End Select structure is as follow:

Select Case variable

 Case Value1

 Statement1

 Case Value2 To Value3

 Statement2

 Case Else

 Statement3

End Select

7.3.1 Check Single Value

The simple select case scenario is checking for single value. In the below example, the code asks

the user to enter any number between 1 and 5, and then shows a message box with the number the

user entered.

Sub CheckNumber 1()

 Dim UserInput As Integer

 ' Capture user input

 UserInput = InputBox("Please enter a number between 1 and 5")

 Select Case UserInput

 Case 1

 MsgBox "You entered 1"

 Case 2

 MsgBox "You entered 2"

 Case 3

 MsgBox "You entered 3"

 Case 4

 MsgBox "You entered 4"

 Case 5

 MsgBox "You entered 5 "

 End Select

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 29

7.3.2 With Multiple Tests

You're not limited to testing a single value against your expression. You can test multiple values by

separating them with commas

Sub CheckNumber 2()

 Dim UserInput As Integer

 ' Capture user input

 UserInput = InputBox("Please enter a number between 1 and 5")

 Select Case UserInput

 Case 1, 3, 5

 MsgBox "You entered odd number "

 Case 2, 4

 MsgBox "You entered even number "

 End Select

End Sub

7.3.3 Using TO Keyword to Define Boundaries

The ñToò keyword can be used in Case statement for defining the boundaries of range to test for

expression test. In that case, the first value must be less than or equal to the second value.

Sub CheckNumber 3()

 Dim UserInput As Integer

 ' Captu re user input

 UserInput = InputBox("Please enter a number between 1 and 5")

 Select Case UserInput

 Case 1 To 3

 MsgBox "You entered 1 - 3"

 Case 4 To 5

 MsgBox "You entered 4- 5"

 End Select

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 30

7.3.4 Using IS Condition

You can use an IS condition with the Select Case construct to check for the value of numbers. You

may use óIsô keyword with the comparison operator like =, >=, <= etc.

Sub CheckNumber 4()

 Dim UserInput As Integer

 ' Capture user input

 UserInput = InputBox("Please enter a number between 1 and 5")

 Select Case UserInput

 Case Is < 3

 MsgBox "You entered a number less than 3 "

 Case Is >= 3

 MsgBox "You entered a number larger or equal to 3 "

 End Select

End Sub

7.3.5 Using Case Else to Catch All

Instead of the second case with a condition, you can also use Case Else. Case Else acts as a catch-all

and anything which doesnôt fall into any of the previous cases is treated by the Case Else.

Sub CheckNumber5 ()

 Dim UserInput As Integer

 ' Capture user input

 UserInput = InputBox("Please enter a number between 1 and 5")

 Select Case UserInput

 Case Is <= 5

 MsgBox "You entere d a correct number "

 Case Else

 MsgBox "You entered a number outside range "

 End Select

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 31

8. The Iteration Structure

8.1 Overview

Directs computer to repeat one or more instructions until some condition is met. Also referred to as a

Loop, Repeating or Iteration

8.2 DoééLoop

There are four ways you can use the Do Loop as shown below:

Excel VBA Programming (Level II) @ Peter Lo 2019 32

8.2.1 Pre Test Loops

A loop is one of the most important structures in programming. Used to repeat a sequence of

statements a number of times. The Do loop repeats a sequence of statements either as long as or until

a certain condition is true.

Consider the following example:

We find that the condition is checked 6 times and 5 execution in the loop.

Excel VBA Programming (Level II) @ Peter Lo 2019 33

8.2.1.1 Do While Loop Example

Five times is executed in the Do While Loop.

Sub DoWhileLoop()

 Dim counter As Integer

 counter = 0

 Do While counter < 5

 counter = counter + 1

 Cells(counter , 1).Value = counter

 Loop

End Sub

8.2.1.2 Do Until Loop Example

No execution in Do Until Loop because the condition is match when enter.

Sub DoUntilLoop()

 Dim counter As Integer

 counter = 0

 Do Until counter < 5

 counter = counter + 1

 Cells(counter , 1).Value = counter

 Loop

End Sub

Excel VBA Programming (Level II) @ Peter Lo 2019 34

8.2.2 Post Test Loop

A Do statement precedes the sequence of statements, and a Loop statement follows the sequence of

statements. The condition, preceded by either the word ñWhileò or the word ñUntilò, follows the word

ñDoò or the word ñLoopò. Be careful to avoid infinite loops ï loops that never end. VB allows for the

use of either the While keyword or the Until keyword at the top or the bottom of a loop.

Consider the following example:

We find that the condition is executed 5 times in the loop.

Excel VBA Programming (Level II) @ Peter Lo 2019 35

8.2.2.1 Do Loop While Example

Five times is executed in the Do Loop While.

Sub DoLoopWhile ()

 Dim counter As Integer

 counter = 0

 Do

 Cells(counter , 1).Value = counter

 counter = counter + 1

 Loop While counter < 5

End Sub

8.2.2.2 Do Loop Until Example

One times is executed in the Do Loop Until.

Sub DoLoopUntil()

 Dim counter As Integer

 counter = 0

 Do

 counter = counter + 1

 Cells(counter , 1).Value = counter

 Loop Until counter < 5

End Sub

