
M8748 © Peter Lo 2007 1

Implementation

Chapter 19

M8748 © Peter Lo 2007 2

In this Lecture you will Learn:

About tools used in software implementation
How to draw component diagrams
How to draw deployment diagrams
The tasks involved in testing a system
How to plan for data conversion from an old
system
Ways of introducing a new system into an
organization
Tasks in review and maintenance

M8748 © Peter Lo 2007 3

Software Implementation Tools

In an iterative project, planning for
implementation will begin in the inception phase
The implementation workflow includes tasks to
set up the environment for implementation
Some tools, particularly CASE tools and
configuration management systems will carry
through from analysis and design activities
A wide range of types of software tools will be
used

M8748 © Peter Lo 2007 4

Software Implementation Tools

Different categories of software that may be used in developing:
CASE Tools
Compilers, Interpreters and Run-times
Visual Editors
IDE (Integrated Development Environment)
Configuration Management Tools
Class Browsers
Component Managers
DBMS (Database Management Systems)
CORBA
Testing Tools
Installation Tools
Conversion Tools
Documentation Generators

M8748 © Peter Lo 2007 5

Software Implementation Tools:
CASE Tools

Many tools now support UML
Make it possible to generate code from the models
May make reverse engineering of code possible, to provide
round-trip engineering
May map classes to a relational database
Link to configuration management tools

M8748 © Peter Lo 2007 6

Software Implementation Tools:
Compilers, Interpreters and Run-times

Different languages require different tools
C++ requires a compiler and a linker to build executables
Java requires a compiler and a run-time program and
libraries to run the byte-code produced by the compiler
C# is like Java and is compiled into MSIL (Microsoft
Intermediate Language)

M8748 © Peter Lo 2007 7

Software Implementation Tools:
Visual Editors

Provide a way of designing GUI interfaces by dragging
and dropping buttons, text fields etc. onto a window
Can often also handle controls or objects that represent
non-visual components such as links to a database or
communications processes

M8748 © Peter Lo 2007 8

Software Implementation Tools:
IDE (Integrated Development Environment)

Manage the many files in a project and the dependencies
among them
Link to configuration management tools
Use compilers to build the project, only recompiling what
has changed
Provide debugging facilities
May include a visual editor
Can be configured to link in third party tools

M8748 © Peter Lo 2007 9

Software Implementation Tools:
Configuration Management Tools

Also called Version Control Tools, although
configuration management is more than just version
control
Maintain a record of file versions and the changes from
one version to the next
Record all the versions of software and tools that are
required to produce a repeatable software build

M8748 © Peter Lo 2007 10

Software Implementation Tools:
Class Browsers

May be part of IDE or visual editors
Originally provided as the way of browsing through
available classes in Smalltalk
Java API documentation is provided in a browseable
hypertext format generated by Javadoc

M8748 © Peter Lo 2007 11

Software Implementation Tools:
Component Managers

New kind of tool to manage components
Provide mechanisms to

Add components
Search for components
Browse for components
Maintain versions of components

M8748 © Peter Lo 2007 12

Software Implementation Tools:
DBMS (Database Management Systems)

Server system
Client software (administration interfaces, ODBC and
JDBC drivers)
Tools to manage the database and carry out performance
tuning
Large DBMS, such as Oracle, come with many tools, even
their own application server

M8748 © Peter Lo 2007 13

Software Implementation Tools:
CORBA

CORBA ORB to handle the marshalling and un-
marshalling of requests and objects
IDL compiler
Registry service

M8748 © Peter Lo 2007 14

Software Implementation Tools:
Testing Tools

Tools written by developers as test harnesses
Automated test tools to run repeated or multiple
simultaneous tests
May allow user to run through test once manually, then
generate a script that can be edited to provide variations

M8748 © Peter Lo 2007 15

Software Implementation Tools:
Installation Tools

Automate the extraction of files from an archive and the
setting up of configuration files and registry entries
Some maintain information about dependencies on other
pieces of software and will install all necessary packages
(e.g. Redhat RPM)
Uninstall software, removing files, directories and registry
entries

M8748 © Peter Lo 2007 16

Software Implementation Tools:
Conversion Tools

Extract data from existing systems
Reformat the data for the new system
Insert it into the database for the new system
May require manual intervention to ‘clean up’ the data –
removing duplication or invalid values in fields

M8748 © Peter Lo 2007 17

Software Implementation Tools:
Documentation Generators

Document models and code
Extract standard information or user-defined information
into document templates
Produce HTML to document the API of classes in the
application

M8748 © Peter Lo 2007 18

Coding and Documentation Standards:
Object-oriented Standard

Naming standards are agreed early in a project
A typical object-oriented standard:

Classes with capital letters: Campaign
Attributes and operations with initial lower case
letters: title, recordPayment()
Words are concatenated together with capital
letters to show where they are joined:
InternationalCampaign, campaignFinishDate,
getNotes()

M8748 © Peter Lo 2007 19

Coding and Documentation Standards:
Names Prefix

Hungarian Notation
Used in C and C++
Names prefixed by an abbreviation to show the
type of the member variable

b for boolean: bOrderClosed
i for integer: iOrderLineNumber
btn for button: btnCloseOrder

M8748 © Peter Lo 2007 20

Coding and Documentation Standards:
Underscores

Using underscores to separate parts of a name
instead of capital letters

Order_Closed
Often used for column names in databases, as it is
easier to replace the underscores with spaces to
produce meaningful column headings in reports
than trying to find the word breaks in concatenated
names

M8748 © Peter Lo 2007 21

Coding and Documentation Standards:
Document code

Think of the people who will maintain your code
Others may be able to use your code to learn good
practice, but only if it is clearly documented
No language is self-documenting; conventions and
standards help
Comply with Java documentation standards, if
coding in Java (Javadoc)
You can take advantage of tools that automate the
production of documentation from comments

M8748 © Peter Lo 2007 22

Implementation Diagrams

Component Diagrams
Used to document dependencies between
components, typically files, either compilation
dependencies or run-time dependencies

Deployment Diagrams
Used to show the configuration of run-time
processing elements and the software
components and processes that are located on
them

M8748 © Peter Lo 2007 23

Notation of Component Diagrams

Rectangles with two small rectangles superimposed at one
end
May implement interfaces, shown as circles connected by a
line
Can be stereotyped, for example to represent files

M8748 © Peter Lo 2007 24

Example of Component Diagrams

Dependency of a component on the interface of another
component

Dependency between high-level components

M8748 © Peter Lo 2007 25

Components

Components should be physical components of a system
Packages can be used to manage the grouping of physical
components into sub-systems
Components can be shown on deployment diagrams to
document their deployment on different processors

?
Production
Scheduler

Scheduler.hlp

Scheduler.ini

Stereotyped Components Example

M8748 © Peter Lo 2007 26

Notation of Deployment Diagrams

Nodes
Rectangular prisms
Represent processors, devices or other resources

Communication Associations
Lines between nodes
Represent communication between nodes
Can be stereotyped

M8748 © Peter Lo 2007 27

Notation of Deployment Diagrams

Can be shown with active objects or components located
on the nodes
In a component diagram, components are component types,
in a deployment diagram, they are component instances

M8748 © Peter Lo 2007 28

Package Diagram vs. Component
Diagram

Package diagrams show the logical grouping of
classes in a system, whereas component diagrams
show the physical components of a system.
During implementation, package diagrams can be
used to show the grouping of physical components
into sub-systems; component diagrams can be
combined with deployment diagrams to show the
physical location of components of the system.

M8748 © Peter Lo 2007 29

Use of Implementation Diagrams

Can be used architecturally to show how elements
of system will work together
Typically used for simple diagrams
Full documentation of dependencies and location
of all components may be better handled by
configuration management software or in a
spreadsheet or database

M8748 © Peter Lo 2007 30

Software Testing

Who tests?
Ideally specialist test teams with access to
software to build and execute test scripts
Often the analysts who have carried out the
initial requirements gathering and analysis
In eXtreme Programming (XP) programmers
are expected to write test harnesses for classes
before they write the code
Users of the system, who will test against
requirements and do user acceptance testing

M8748 © Peter Lo 2007 31

Software Testing

What kinds of tests?
Black box testing

Does it do what it’s meant to do?
Does it do it as fast as it should?

White box testing
Is it not just a solution to the problem, but a
good solution?

M8748 © Peter Lo 2007 32

Purpose of Testing

The purpose of testing is to try find errors, not to prove the
software is correct

Test data should test the software at its limits and test
business rules

Extreme values (very large numbers, long strings)
Borderline values (0, -1, 0.999)
Invalid combinations of values (age = 3, marital
status = married)
Nonsensical values (negative order line quantities)
Heavy loads (are performance requirements met?)

M8748 © Peter Lo 2007 33

Levels of Testing

Unit Testing (Individual classes)
Integration Testing (Classes work correctly
together)
Sub-system Testing (Sub-system works correctly
and delivers required functionality)
System Testing (Whole system works together
with no unwanted interaction between sub-
systems)
Acceptance Testing (System works as required
by the users and according to specification)

M8748 © Peter Lo 2007 34

Outside-in or Inside-out?

Test Harnesses
Write programs that create instances of classes
and send them messages to test operations
execute correctly

Mock objects (Endo-testing)
Write mock objects that implement the
interface of real objects and check the signature
of messages sent to them and the state of the
objects

M8748 © Peter Lo 2007 35

Levels of Testing

Level 1
Test modules (classes), then programs (use
cases) then suites (application)

Level 2 (Alpha Testing or Verification)
Execute programs in a simulated environment
and test inputs and outputs

Level 3 (Beta Testing or Validation)
Test in a live user environment and test for
response times, performance under load and
recovery from failure

M8748 © Peter Lo 2007 36

Test Documentation: Test Plans

Written before the tests are carried out!
Written, in fact, before the code is written
Contains Test Cases

Description of test
Test environment and configuration
Test data
Expected outcomes

M8748 © Peter Lo 2007 37

Test Documentation: Test Results

Ideally in a spreadsheet or database
Record when tests are failed or passed
Allow reporting of percentage passed
Ideally should be linked to requirements
Error results should be recorded in a fault
reporting package with enough details for
developers to reproduce them with a view to
fixing the bugs

M8748 © Peter Lo 2007 38

Data Conversion for Manual System

Data from manual systems needs collating and
putting into a standard format
Incomplete data may need to be chased up
There is a cost associated with keying data into a
new system
There may be a requirement for data entry screens
that will only be used to get data into the system to
start it up

M8748 © Peter Lo 2007 39

Data Conversion for Existing System

Existing data must be checked for correctness
Specially written programs may be required to
check and convert the data
Data may be loaded into a staging area to be
‘cleaned up’
Data is imported into the new system
Data must be verified after being imported

M8748 © Peter Lo 2007 40

User Documentation

Training manuals organized around the tasks the
users carry out
On-line Computer-based Training (CBT) that can
be delivered when the users need it
Reference manuals to provide complete
description of the system in terms the users can
understand
On-line help replicating the manuals

M8748 © Peter Lo 2007 41

User Training

Set clear learning objectives for trainees
Training should be practical and geared to the
tasks the users will carry out
Training should be delivered ‘just in time’ not
weeks before the users need it
CBT can deliver ‘just in time’ training
Follow up after the introduction of the system to
make sure users haven’t got into bad habits
through lack of training or having forgotten what
they had been told

M8748 © Peter Lo 2007 42

Implementation Strategies

M8748 © Peter Lo 2007 43

Implementation Strategies:
Direct Changeover

On a date the old system stops and the new system
starts

+ brings immediate benefits
+ forces users to use the new system
+ simple to plan
– no fallback if problems occur
– contingency plans required for the unexpected
– the plan must work without difficulties

Suitable for small-scale, low-risk systems

M8748 © Peter Lo 2007 44

Implementation Strategies:
Parallel Running

Old system runs alongside the new system for a period of
time

+ provides fallback if there are problems
+ outputs of the two systems can be compared, so
testing continues into the live environment
– high running cost including staff for dual data entry
– cost associated with comparing outputs of two
systems
– users may not be committed to the new system

Suitable for business-critical, high-risk systems

M8748 © Peter Lo 2007 45

Implementation Strategies:
Phased Changeover

The new system is introduced in stages, department by
department or geographically

+ attention can be paid to each sub-system in turn
+ sub-systems with a high return on investment can be
introduced first
+ thorough testing of each stage as it is introduced
– if there are problems rumours can spread ahead of the
implementation
– there can be a long wait for benefits from later stages

Suitable for large systems with independent sub-systems

M8748 © Peter Lo 2007 46

Implementation Strategies:
Pilot Project

Complete system is tried out in one department or at one
site

+ can be used as a learning experience
+ can feed back into design before system is launched
organization-wide
+ decision on whether to go ahead across the whole
organization can depend on the pilot outcome
+ reduces risk
– there is an initial cost without benefits across the
whole organization

Suitable for smaller systems and packaged software

M8748 © Peter Lo 2007 47

Review

Post-implementation review
Review the system

whether it is delivering the benefits expected
whether it meets the requirements

Review the development project
record lessons learned
use actual time spent on project to improve
estimating process

Plan actions for any maintenance or enhancements

M8748 © Peter Lo 2007 48

Evaluation Report

Cost Benefit Analysis – Has it delivered?
Compare actual with projections
Functional Requirements – Have they been met?
Any further work needed?
Non-functional Requirements – Assess whether
measurable objectives have been met
User Satisfaction – Quantitative and qualitative
assessments of satisfaction with the product
Problems and Issues – Problems during the
project and solutions so lessons can be learned

M8748 © Peter Lo 2007 49

Evaluation Report (cont’)

Positive Experiences – What went well? Who deserves
credit?
Quantitative Data for Planning – How close were time
estimates to actual? How can we use this data?
Candidate Components for Reuse – Are there
components that could be reused in other projects in the
future?
Future Developments – Were requirements left out of the
project due to time pressure? When should they be
developed?
Actions – Summary list of actions, responsibilities and
deadlines

M8748 © Peter Lo 2007 50

Maintenance Activities

Systems need maintaining after they have gone live
Bugs will appear and need fixing
Enhancements to the system may be requested
Maintenance needs to be controlled so that bugs are not
introduced and unnecessary changes are not made
Helpdesk, operations and support staff need training to
take on these tasks
A Change Control System is required to manage requests
for bug fixes and enhancements
Changes need to be evaluated for their cost and their
impact on other parts of the system, and then planned

M8748 © Peter Lo 2007 51

Maintenance Documentation

Bug reporting database
Requests for enhancements
Feedback to users
Implementation plans for changes
Updated technical and user documentation
Records of changes made

