
I135-1-A @ Peter Lo 2011 1

Programming with
Microsoft Visual Basic.NET

Lesson 1

I135-1-A @ Peter Lo 2011 2

Who am I?

Lo Chi Wing, Peter

Email: Peter@Peter-Lo.com
MSN: cscwlo@hotmail.com

SAP Consultant
Visiting Lecturer

I135-1-A @ Peter Lo 2011 3

Are you take the right course?

This course is intended for students who would like to learn
how to develop Windows Form application using Visual
Basic.NET.
The code examples are not particularly complex, but it is
strong recommend that you practice and complete all tutorials.

I135-1-A @ Peter Lo 2011 4

What Application can you Develop after
complete this course?

I135-1-A @ Peter Lo 2011 5

Course Outline

Lesson 1 Introduction to Visual Studio

Lesson 2 Programming Concepts

Lesson 3 Using Controls

Lesson 4 Procedures and Functions

Lesson 5 File I/O and Printing Controls

Lesson 6 Database Connection and Crystal Report

Lesson 7 Deployment and Smart Phone Development

I135-1-A @ Peter Lo 2011 6

Where can you find the material?

Workshop Notes and Exercises
– http://www.Peter-Lo.com/Teaching/I135-1-A/

Microsoft Visual Studio
– http://msdn.microsoft.com/vstudio/

Microsoft Visual Basic Developer Center
– http://msdn.microsoft.com/vbasic/

Microsoft DreamSpark
– https://www.dreamspark.com

I135-1-A @ Peter Lo 2011 7

Introduction

Overview of Basic and .NET Framework

I135-1-A @ Peter Lo 2011 8

A Brief History for Basic…

Visual basic evolved from BASIC (Beginners' All-purpose
Symbolic Instruction Code).
The BASIC language was created by Professors John Kemeny
and Thomas Kurtz of Dartmouth College in the mid 1960s.
It is a carefully constructed English-Like language basically
used by the programmers to write simple computer programs.
It served the purpose of educating laymen like we all the basic
concepts of programming.
From then on many versions of BASIC were developed to
accommodate different computer platforms.

I135-1-A @ Peter Lo 2011 9

What is Visual Studio 2008?

Best tool set for Windows Server 2008, Windows Vista and
Microsoft Office 2007
– .NET Framework 3.5 design surfaces
– Office 2007 support including ClickOnce and VSTO
– MFC support for Vista common controls

Improvements for Web Developers
– HTML / CSS designer enhancements
– Integrated AJAX and JavaScript support

Language advances
– .NET Framework multi-targeting support
– Improved Data & Language integration in VB / C#

I135-1-A @ Peter Lo 2011 10

Network support
and managed

services

Feature of Visual Studio 2008

I135-1-A @ Peter Lo 2011 11

.NET Framework 2.0 + SP1

Windows
Presentation
Foundation

Windows
Communication

Foundation

Windows
Workflow

Foundation

Windows
CardSpace

.NET Framework 3.0 + SP1

.NET Framework 3.5

LINQ
WF & WCF

Enhancements
Add-in

Framework
Additional

Enhancements

.NET Framework 3.5 + SP1

MVC Dynamic Data Entity Framework Data Services

What is .NET Framework 3.5?

I135-1-A @ Peter Lo 2011 12

Lifecycle Tools,
.NET

Framework,
& languages

Services

Windows
Apps

Web
Apps

Office
Apps

Mobile
Apps

What can Visual Studio create for you?

I135-1-A @ Peter Lo 2011 13

Visual Studio.NET

A Quick Look to the Visual Studio 2008
Environment

I135-1-A @ Peter Lo 2011 14

Microsoft Visual Studio .NET

The Microsoft Visual Studio Development Environment is
also called Integrated Development Environment(IDE):
– A form designer
– A code editor
– A compiler
– A debugger
– An object browser
– A Help facility

I135-1-A @ Peter Lo 2011 15

Welcome Screen

I135-1-A @ Peter Lo 2011 16

Development Environment

I135-1-A @ Peter Lo 2011 17

General Project Setup

You can call up the Options dialog by Tools ��� � Options.

I135-1-A @ Peter Lo 2011 18

Visual Basic.NET

Create VB.NET Project

I135-1-A @ Peter Lo 2011 19

Development Process

Planning (Design)
– Design the GUI (graphical user interface)
– List the objects and properties needed
– Plan the event procedures (what the code does)

Programming (Implementation)
– Define the GUI using objects (Form, TextBox, Label, etc.)
– Set the properties (Color, Font, etc)
– Write code to implement procedures

I135-1-A @ Peter Lo 2011 20

Program Development

To create a VB.NET program you will utilize the Visual
Basic .NET development environment, and you will
– Create a window, called Form
– Select elements, which are classes, from a toolbox and

place them within the window, called Controls
– Write code for each object that you place on the window

that defines how the object responds to various events,
called Object-oriented Programming (OOP).

I135-1-A @ Peter Lo 2011 21

Solutions, Projects and Files

Solution: can contain several projects
Project: container that stores files associated with project

I135-1-A @ Peter Lo 2011 22

VB.NET Application Files

Extension Description

.sln A solution file that holds information about the project. This
is the only file that is opened

.suo A solution user options file that stores information about the
selected options

.vb A VB file that holds the definition of a form

.resx A resource file for the form

.vbproj A project file that describes the project and lists the files are
included

.user A project user option file that holds project option settings

I135-1-A @ Peter Lo 2011 23

VB.NET Object Oriented Programming

Using the VB.NET OOP Technology to work with objects and
develop an event-driven program.
Each object consists of:
– Classes: Forms, Labels, Buttons, etc
– Objects: A particular Form, Label, Button, etc.
– Properties (attributes of an object): The Name of a form,

the Text in a Label, etc.
– Methods (the actions that an object performs in response to

GUI events): Close, Show, Clear, etc.
– Event: when a user takes an action

I135-1-A @ Peter Lo 2011 24

A Sample Graphical User Interface (GUI)

Label

GroupBox

RadioButtons

TextBox

PictureBox

Buttons

Form

I135-1-A @ Peter Lo 2011 25

Define Properties for Object

I135-1-A @ Peter Lo 2011 26

Setting Startup Object

In the Project Property dialog box (Project ��� � Properties),
you can select the Startup Form

I135-1-A @ Peter Lo 2011 27

Coding Editor Windows

Method Name List
Box

Code Editor Tab

Remark Statement

Assignment Statement

Break
point

Form Designer Tab

Class
Name List

Box

I135-1-A @ Peter Lo 2011 28

IntelliSense

As you typed the code, you may have noticed that after you
typed “.”, a list of words appeared below the cursor.
This feature is called IntelliSense. It allows you to just type
the first few letters of a word until the word is selected in the
list. Once selected, you can press the [Tab] key to finish the
word.

I135-1-A @ Peter Lo 2011 29

Write Code

Develop a Visual Basic code in Procedures
A sub procedure begins with Private Suband ends with End
Sub
Note:
– Write code for the events you care about, the events you

want to respond to with code
– Code is written as event procedures
– VB will ignore events for which you do not write code

I135-1-A @ Peter Lo 2011 30

' Display the Hello World message.

Remark Statement

Also known as Comment, used for documentation
Non-executable
Automatically colored Green in Editor
Begins with an apostrophe (')
– On a separate line from executable code
– At the right end of a line of executable code

I135-1-A @ Peter Lo 2011 31

Assignment Statement

Assigns a value to a property or variable
Operates from right to left
Enclose text strings in quotation marks (" ")
Syntax: variable= value
Examples
– pi = 3.14
– messageLabel.ForeColor = Color.Red
– messageLabel.Text = "Hello World "

I135-1-A @ Peter Lo 2011 32

Continuing Long Program Lines

Line continuation character (_):
– Used to break up a long instruction into two or more

physical lines
– Underscore must be preceded by a space and must appear

at the end of a physical line
– Do not use it within parentheses

Space, then
Underscore

I135-1-A @ Peter Lo 2011 33

Terminate the Application

The Me.Close()instruction closes the current form at run time
– If the current form is the main form, the application is

terminated
The End statement terminate the application at run time
– It has the same effect with the Me.Close()instruction in

main form.

I135-1-A @ Peter Lo 2011 34

Programming Concept

Variables and Constants

I135-1-A @ Peter Lo 2011 35

Variables and Constants

Variables
– Memory locations that hold data that can be changed

during project execution
Example: Number of working hours – WorkingHour

Constant (User defined)
– Memory locations that hold data that cannot be changed

during project execution
Example: The value of pi

Intrinsic Constant (System defined)
– System defined within Visual Studio

Example: TextBox.ForeColor = Color.Blue

I135-1-A @ Peter Lo 2011 36

Variables and Constants

Variables and Constants use temporary memory locations that
have:
– A Name (identifier)
– A Data type:

Dim var1 As Integer
Dim var2 As String
Const PI = 3.14

– A Scope: Subroutine, Module or Global
Variable values can be changed as the program is executed
Constant values cannot be changed

I135-1-A @ Peter Lo 2011 37

Declaration

Variables and Named Constants must be declared and specify the type of
data before being used in code
In Visual Basic when you declare a Variable or Named Constant
– An area of memory is reserved
– A name is assigned called an Identifier
– Follow rules and naming conventions

Use Declaration Statements to establish Variables and Constants
– Assign name and data type
– Not executable unless initialized on same line

Examples:
– Const var1 As String = “Hello World”
– Dim var2 As Integer

I135-1-A @ Peter Lo 2011 38

Basic Data Types in Visual Basic

I135-1-A @ Peter Lo 2011 39

Declaring Variables

Declared inside a procedure using a Dim and As statement
Declared outside a procedure using Public, Private or Dim
statements
Always declare the variable’s data type
May declare several variables with one statement
Use IntelliSense to assist in writing statements
Example
– Dim var1 As Integer
– Public var2 As Double
– Private var3 As String

I135-1-A @ Peter Lo 2011 40

Assigning Variables

You assign a value to your variable with the = sign, which is
sometimes called the assignment operator:
– var1 = 42

You can also declare a variable on one line of code, and then
later assign the value on another line. This can result in an
error if you try to use the variable before assigning it a value.
– Dim var1 As Integer = 42
– Dim var2 As String = “Hello world"

I135-1-A @ Peter Lo 2011 41

Constants - Named & Intrinsic

Named Constants
– User assigned name, data type and value
– Use CONST keyword to declare
– The value of named constants can not be changed during

the execution.
– Example

Const COURSE_NAME As String = “VB.NET"
Intrinsic Constants
– System defined within Visual Studio

I135-1-A @ Peter Lo 2011 42

Naming Variables and Constants

Identifiers/Names in VB are not case sensitive, but
required for each Variable and Constant
Rules of Naming Conventions for an identifier:
Must follow Visual Basic Naming Rules
– Meaningful names
– May consist of letters, digits, and underscores
– Can not contain spaces, periods, or reserved

words
– Include class (data type) of variable
– Make the first letter lowercase and then capitalize

each word of the name – always use mixed case
for variables and UPPERCASEfor constants

I135-1-A @ Peter Lo 2011 43

What is a String?

A string is any series of text characters, such as letters,
numbers, special characters, and spaces. Strings can be
human-readable phrases or sentences, such as “Hello World"
or an apparently unintelligible combination, such as
"@#fTWRE^3 35Gert".
String variables are created just as other variables: by first
declaring the variable and assigning it a value, as shown below.

Dim aString As String = "This is a string"

I135-1-A @ Peter Lo 2011 44

Assigning String

When assigning actual text (also called a string literal) to a
String variable, the text must be enclosed in quotation marks
(""). You can also use the = character to assign one String
variable to another String variable, as shown in this example.
– Dim aString As String = "This is a string"
– ...
– Dim bString As String = ""
– bString = aString

The previous code sets the value of bString to the same value
as aString (This is a string).

I135-1-A @ Peter Lo 2011 45

Concatenate String

You can use the ampersand & character to sequentially combine two or
more strings into a new string, as shown below.
– Dim aString As String = "Hello"
– Dim bString As String = "World"
– Dim cString As String = ""
– cString = aString & bString

The previous example declares three String variables and respectively
assigns “Hello" and “World" to the first two, and then assigns the
combined values of the first two to the third variable.
What do you think the value of cString is? You might be surprised to learn
that the value is Across the “HelloWorld” because there is no space at the
end of aString or at the beginning of bString. The two strings are simply
joined together.
If you want to add spaces or anything else between two strings, you must
do so with a string literal, such as " ".

I135-1-A @ Peter Lo 2011 46

Scope and Lifetime of Variables

Scope: indicates where the variable can be used
Lifetime: indicates how long the variable remains in memory
Declare the scope of a variable by choosing where to place the
declaration statement
Scope of variables are declared as
– Namespace
– Module-level
– Local
– Block-level

Lifetime of a variable is the period of time the variable exists

I135-1-A @ Peter Lo 2011 47

Scope and Lifetime of Variables

Namespace
– Available to all procedures of project
– Good programming practice excludes use of Namespace variables

Module
– Available to all procedures within that module (often a form)
– Use Public or Private keywords
– Place in declaration section of module (form)

Local
– Available only to the procedure it is declared in
– Declare with Dim keyword and place at top of procedure

Block
– Available only in block of code where declared

I135-1-A @ Peter Lo 2011 48

Module Scope Variables

Declared in the form’s declarations section using Private
keyword
Variable can be used by all procedures in the form
Module-level variables retain their values until the application
ends

I135-1-A @ Peter Lo 2011 49

Procedure Scope Variables

Declared within a procedure using the Dim keyword
Only the procedure can use the variable
With procedure-level scope, two procedures can each use the
same variable names

I135-1-A @ Peter Lo 2011 50

Block Scope Variables

Scope is defined by where the variable is declared within a
program
Within an event handler, an If…Then…Else statement is
considered a block of code
Variables can be declared within a block of code
The variable can be referenced only within the block of code
where it is declared

I135-1-A @ Peter Lo 2011 51

Finding and Fixing Errors

Debugging

I135-1-A @ Peter Lo 2011 52

Different Mode in VB.NET

Three modes are defined when you are running VB.NET.
– Design Timeis when you are creating the form and writing

the VB code. If you choose the Debug tool from Toolbar
menu, the [Start], [Break], and [Stop] buttons are displayed
on a Toolbar near the top of the screen.

– Run Time is when you are actually running the program in
VB.NET. When the program is running, the [Start] button
is disabled and the Debug menu is changed to show the
Break and Stop as shown on the slide.

– Break Time is when the program pauses because of an
error or you select the break mode, which is the button with
double vertical bars.

I135-1-A @ Peter Lo 2011 53

Finding and Fixing Errors

Programming errors come in three varieties:
– Syntax Errors
– Run-Time Errors
– Logic Errors

Syntax Error
Description

I135-1-A @ Peter Lo 2011 54

Syntax Errors (Compile Errors)

Statements that break VB’s rules for punctuation, format or
spelling
Smart editor finds most syntax errors, compiler finds the rest
Common sources of syntax errors are misspelling an object
name, property or method, keywords, or using wrong
punctuations

I135-1-A @ Peter Lo 2011 55

Run-time Errors

Statements or functions that fail to execute such as impossible
arithmetic operations, or unexpected termination
Common source of these errors include division by zero,
attempting arithmetic operations on non-numeric data, and
taking the square root of a negative number
Example:
– Dim x As Double
– x = Math.Sqr(-5)

I135-1-A @ Peter Lo 2011 56

Logic Errors

Logic errors occur when the project runs but produces
incorrect results
Common sources of these errors include incorrect calculations,
display of the wrong information, or incorrect formatting of
output
These are generally the hardest errors to fix!
– They are errors made by the programmer or designer
– Well commented programs enable another programmer to

read the code and correct logic errors
Example: area = 2 * pi * r

I135-1-A @ Peter Lo 2011 57

Stepping

One of the most common debugging procedures is stepping –
executing code one line at a time.
The Debug menu provides three commands for stepping
through code:
– Step Into
– Step Over
– Step Out

I135-1-A @ Peter Lo 2011 58

Step Into, Step Over & Step Out

Step Into executes only the call itself, then halts at the first
line of code inside the function. On a nested function call, Step
Into steps into the most deeply nested function.
Step Overexecutes the entire function, then halts at the first
line outside the function..
Step Outresumes execution of your code until the function
returns, then breaks at the return point in the calling function.

Use Step Into if you want to look inside the function call.
Use Step Over if you want to avoid stepping into functions.
Use Step Out when you are inside a function call and want to
return to the calling function

I135-1-A @ Peter Lo 2011 59

Breakpoints

A breakpoint tells the debugger that an application should
break (pause execution) at a certain point or when a certain
condition occurs. When a break occurs, your program and the
debugger are said to be in break mode.

I135-1-A @ Peter Lo 2011 60

Different Type of Breakpoint

The Visual Studio debugger has four types of breakpoints:
– A function breakpoint causes the program to break when execution

reaches a specified location within a specified function.
– A file breakpoint causes the program to break when execution reaches

a specified location within a specified file.
– An address breakpoint causes the program to break when execution

reaches a specified memory address.
– A data breakpoint causes the program to break when the value of a

variable changes. You can set a data breakpoint on a global variable or
a local variable in the top-most scope of a function. (C++ only)

