
I123-1-A@Peter Lo 2007 1

Wireless Online Game
Development for Mobile Device

Lesson 7

I123-1-A@Peter Lo 2007 2

What have we learnt last week?

Introduction to MMAPI
Play Audio files (Wav and Midi format)
Play MPEG movie from Internet
Design and play your own Tone Sequence
Add sound effect to your game

I123-1-A@Peter Lo 2007 3

Generic Connection Framework

In the MIDP, you interact with the network using
the Generic Connection framework.
The framework is a set of classes and interfaces
defined by the CLDC that replaces most of the
java.io and java.net classes defined by J2SE.

I123-1-A@Peter Lo 2007 4

Generic Connection Framework

In the CLDC Generic Connection framework, all
connections are created using the open static
method from the Connector class.
If successful, this method returns an object that
implements one of the generic connection
interfaces.
The Connection interface is the base interface such
that StreamConnectionNotifier is a Connection
and InputConnection is a Connection too.

I123-1-A@Peter Lo 2007 5

Connection Interface Hierarchy

I123-1-A@Peter Lo 2007 6

The Connection interface is the most basic connection type.
It can only be opened and closed.
The InputConnection interface represents a device from
which data can be read. Its openInputStream method
returns an input stream for the connection.
The OuputConnection interface represents a device to
which data can be written. Its openOutputStream method
returns an output stream for the connection.
The StreamConnection interface combines the input and
output connections.

Connection Interface Hierarchy

I123-1-A@Peter Lo 2007 7

The ContentConnection is a sub-interface of
StreamConnection. It provides access to some of
the basic meta data information provided by
HTTP connections.
The StreamConnectionNotified waits for a
connection to be established. It returns a
StreamConnection on which a communication
link has been established.
The DatagramConnection represents a datagram
endpoint.

Connection Interface Hierarchy

I123-1-A@Peter Lo 2007 8

Package javax.microedition.io

The javax.microedition.io CLDC package
contains classes for I/O, including networking I/O.
To these CLDC classes, the MIDP adds the
HttpConnection interface for HTTP protocol
access.
This interface defines the necessary methods and
constants for an HTTP connection

I123-1-A@Peter Lo 2007 9

Open Connector

The open method of the Connector class has the
following syntax, where the String parameter has
the format "protocol:address;parameters".

Connector.open(String);

I123-1-A@Peter Lo 2007 10

Connector Examples

HTTP Connection
Connector.open("http://address");

Datagram Connection
Connector.open("datagram://address:port#");

Communicate with a Port
Connector.open("comm:0;baudrate=9600");

Open Files
Connector.open("file://myFile.txt");

I123-1-A@Peter Lo 2007 11

Implementation of HTTP
The MIDP extends CLDC
connectivity to provide
support for a subset of the
HTTP protocol.
HTTP can either be
implemented using IP
protocols (such as TCP/IP) or
non-IP protocols (such as
WAP and i-mode).

I123-1-A@Peter Lo 2007 12

The HttpConnection Interface

The HttpConnection interface is part of the
package javax.microedition.io.
This interface defines the necessary methods and
constants for an HTTP connection.
It has the following signature:
public interface HttpConnection
extends javax.microedition.io.ContentConnection

I123-1-A@Peter Lo 2007 13

The HttpConnection Interface

The HttpConnection interface defines all the usual
methods you would expect to see for making
HTTP requests and processing the replies included:

setRequestMethod
getHeaderField
openInputStream

The HttpConnection interface makes it simple to
interact with any web site on the Internet.

I123-1-A@Peter Lo 2007 14

The HTTP Connection
The HTTP protocol is a request-response application
protocol in which the parameters of the request must be set
before the request is sent.
The connection could be in one of the three following
states:

Setup: No connection yet
Connected: Connection has been made, the request has
been sent, and some response is expected
Closed: Connection is closed

I123-1-A@Peter Lo 2007 15

HttpConnection Implementation

In the setup state the following methods can be invoked:
setRequestMethod
setRequestProperty

For example, suppose you have this connection:
HttpConnection conn = (HttpConnection)
Connector.open ("http://server");

Then, you can set the request method to be of type POST:
conn.setRequestMethod (HttpConnection.POST);

HTTP properties such as User-Agent can also be set:
c.setRequestProperty("User-Agent", "Profile/MIDP-1.0
Configuration/CLDC-1.0");

I123-1-A@Peter Lo 2007 16

State: Setup Connected
If a method requires data to be sent or received from server,
there is a state transition from Setup to Connected.
Examples of methods that cause the transition include:

openInputStream
openOutputStream
openDataInputStream
openDataOutputStream
getLength
getType
getDate
getExpiration

I123-1-A@Peter Lo 2007 17

State: Open

While the connection is open, some of these
methods that may be invoked:

getURL
getProtocol
getHost
getPort

I123-1-A@Peter Lo 2007 18

Make an HTTP request

To make an HTTP request, use the
Connector.open method and a conventional URL,
casting the result to an HttpConnection.

import javax.microedition.io.*;

HttpConnection conn = Connector.open("http://server");

I123-1-A@Peter Lo 2007 19

Persistent Storage
Persistent storage is a non-volatile
place for storing the state of objects.
Without persistent storage, objects
and their states are destroyed when
an application closes.
If you save objects to persistent
storage, their lifetime is longer than
the program that created them, and
later you can read their state and
continue to work with them.

I123-1-A@Peter Lo 2007 20

Introducing the RMS
The MIDP provides a mechanism for MIDlets to
persistently store data and retrieve it later.
This mechanism is a simple record-oriented database
called the Record Management System (RMS).
A MIDP database (or a record store) consists of a
collection of records that remain persistent after the
MIDlet exits.
When you invoke the MIDlet again, it can retrieve data
from the persistent record store.

I123-1-A@Peter Lo 2007 21

Introducing the Record Store
Record stores are platform-dependent because they are
created in platform-dependent locations.
MIDlets within a single application can create multiple
record stores with different names.
The RMS APIs provide the following functionality:

Allow MIDlets to manipulate records within a record
store.
Allow MIDlets in the same application to share records.

I123-1-A@Peter Lo 2007 22

Working with Threads

The MIDP RMS implementation ensures that all
individual record store operations are atomic,
synchronous, and serialized, so no corruption
occurs with multiple access.
If your MIDlets use multiple threads to access a
record store, it is your responsibility to
synchronize this access, or some of your records
might be overwritten.

I123-1-A@Peter Lo 2007 23

The RMS Package

To use the RMS, import the
javax.microedition.rms package.
The RMS package consists of the following four
interfaces, one class, and five exception classes:

I123-1-A@Peter Lo 2007 24

Interfaces
RecordComparator:

Defines a comparator to compare two records.
RecordEnumeration:

Represents a bidirectional record enumerator.
RecordFilter:

Defines a filter to examine a record and checks if it
matches based on a criteria defined by the application.

RecordListener:
Receives records which were added, changed, or
deleted from a record store.

I123-1-A@Peter Lo 2007 25

Classes

RecordStore:
Represents a record store.

I123-1-A@Peter Lo 2007 26

Exceptions
InvalidRecordIDException:

Thrown to indicate the RecordID is invalid.
RecordStoreException:

Thrown to indicate a general exception was thrown.
RecordStoreFullException:

Thrown to indicate the record store file system is full.
RecordStoreNotFoundException:

Thrown to indicate the record store could not be found.
RecordStoreNotOpenException:

Thrown to indicate an operation on a closed record
store.

I123-1-A@Peter Lo 2007 27

What is a Record Store?

A record store consists of a collection of records
that are uniquely identified by their record ID,
which is an integer value.
The record ID is the primary key for the records.
The first record has an ID of 1, and each
additional record is assigned an ID that is the
previous value plus 1.

I123-1-A@Peter Lo 2007 28

Opening a Record Store
To open a record store, use the openRecordStore()
static method:

RecordStore db =
RecordStore.openRecordStore ("myDBfile",
true);

This code creates a new database file named
“myDBfile”.
The second parameter, which is set to true, says
that if the record store does not exist, create it.

I123-1-A@Peter Lo 2007 29

Creating a New Record
A record is an array of bytes.
You can use the DataInputStream, DataOutputStream,
ByteArrayInputStream and ByteArrayOutputStream
classes to pack and unpack data types into and out of the
byte arrays.
The first record created has an ID of 1 and is the primary
key. The second record has the previous ID + 1, …etc.
You construct a DataOutputStream for writing the record
to the record store, then you convert the
ByteArrayOutputStream to a byte array, and finally you
invoke addRecord() to add the record to the record store.

I123-1-A@Peter Lo 2007 30

Example
Suppose you have the following string record: FirstName,
LastName, Age. To add this record to the record store, use
the addRecord() method as follows:

ByteArrayOutputStream baos = new
ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);
dos.writeUTF (record);
byte[] b = baos.toByteArray();
db.addRecord (b, 0, b.length);

I123-1-A@Peter Lo 2007 31

Reading Data from the Record
Store

To read a record from the record store, you
construct input streams instead of output streams.
This is done as follows:

ByteArrayInputStream bais = new
ByteArrayInputStream(record1);
DataInputStream dis = new
DataInputStream(bais);
String in = dis.readUTF();

I123-1-A@Peter Lo 2007 32

Deleting a Record from the
Record Store

To delete the record, you have to know the record ID for
the record to be deleted. Then use the deleteRecord()
method. This method takes an integer as a parameter,
which is the record ID of the record to be deleted.
There is no method to get the record ID. To work around
this, every time you create a new record, add its record ID
to a vector like this:

Vector recordIDs = new Vector();
int lastID = 1;
db.addRecord();
recordIDs.addElement(new Integer(++lastID));

I123-1-A@Peter Lo 2007 33

Deleting a Record from the
Record Store

To delete a record, find the record ID of the record you
want to delete:
Compare to see if this is the record you want by invoking
compare() which is shown next. Then call
db.deleteRecord(id);

Enumeration IDs = recordIDs.elements();
while(IDs.hasMoreElements()) {

int id = ((Integer) IDs.nextElement()).intValue();
}

I123-1-A@Peter Lo 2007 34

Comparing my Record with
Records in the Record Store

To search for the right record to delete, your
application must implement the Comparator
interface (by providing an implementation to the
compare method) to compare two records.
The return value indicates the ordering of the two
records.

I123-1-A@Peter Lo 2007 35

Example
Suppose you want to compare two strings that you
retrieved from two records.

public someClas implements Comparator {
public int compare(byte[] record1, byte[] record2) {

• ByteArrayInputStream bais1 = new ByteArrayInputStream(record1);
• DataInputStream dis1 = new DataInputStream(bais1);
• ByteArrayInputStream bais2 = new ByteArrayInputStream(record2);
• DataInputStream dis2 = new DataInputStream(bais2);
• String name1 = dis1.readUTF();
• String name2 = dis.readUTF();
• int num = name1.compareTo(name2);
• if (num > 0) { return RecordComparator.FOLLOWS;
• } else if (num < 0) { return recordcomparator.precedes;
• } else {return recordcomparator.equivalent;
• }

}
}

I123-1-A@Peter Lo 2007 36

Record Comparator Constants
The constants FOLLOWS, PRECEDES, and
EQUIVALENT are defined in the RecordComparator
interface and have the following meanings:

FOLLOWS: Its value is 1 and means the left parameter
follows the right parameter in terms of search or sort
order. (A > B)
PRECEDES: Its value is -1 and means the left
parameter precedes the right parameter in terms on
search or sort order. (A < B)
EQUIVALENT: Its value is 0 and means the two
parameters are the same. (A = B)

I123-1-A@Peter Lo 2007 37

Closing the Record Store

To close the record store, use the
closeRecordStore() method

I123-1-A@Peter Lo 2007 38

Making a Good Game
There are 5 steps to creating a game, from the
moment the concept enters the space between
your ears to the moment your computer screams
"File's Done".

Conceptualization
Design
Programming
Testing
Release and Marketing

I123-1-A@Peter Lo 2007 39

Conceptualization
This is the part where a game idea enters your head. For
whatever reason, you were thinking about something, and
suddenly boom, your brain is fixated on this thought.
Take the game concept and "play the game" inside your
head – imagine how it would appear on a computer screen.
Our brains are weird, so you shall have a tough time
recreating exactly what your mind sees when it comes to it.
Ask yourself while you're “playing”, "Does this game
seem fun? Is it something I could get into? Is it something
other people will enjoy?"
If you answered NO to any of those questions, you may
want to reevaluate your concept.

I123-1-A@Peter Lo 2007 40

Plan your Entire Game

You should plan out every little part of the game.
Need to get the plot and storyline down.
Write down each of the events that is going to
happen in order.
Write down what all the main characters are going
to say.
Write down what location each event takes place
in.

I123-1-A@Peter Lo 2007 41

Story Design
The story is the driving force behind any RPG.
All of your characters and events must be told believably
and expressed through your story. Without one, your RPG
will lose a lot of it's appeal.
Why is the story so important?

It is one of the main things that keeps your players
interested.
If the only thing keeping your game going is the
graphics and game play, the player is likely to get bored
and enjoy the game much less.

I123-1-A@Peter Lo 2007 42

How to write a good story?
It makes things much easier if you base a lot of the events
on things that happened in your real life. You already
know the experiences and it makes it easy to write it out.
Look to other great stories for inspiration. Don't steal their
stories, try to do something similar in your game. Only
make it original by adding your own twist to it.
Tether the story down to reality as you did with the
characters. If the player feels as though it could really
happen, he or she will probably enjoy it a lot more.
To summarize, make the story believable and base it on
experiences of your own life. It's one of the most important
parts of your RPG, so give it the proper attention.

I123-1-A@Peter Lo 2007 43

Map Design
Working out what the world map and locations:
Give your world a structure, and figure out where
there will be towns and dungeons and everything
else.
Draw a little square for each card and put it's
number inside, then connect the squares with lines
to show where you can move to inside.
It should come out so that you know the basic
layout of each location and have an idea of what
card will go where.

I123-1-A@Peter Lo 2007 44

Simple Map

Mountain

Marsh

Water

Forest

Field

Village

I123-1-A@Peter Lo 2007 45

Movement Design

During the game you will spend much of your
time moving from one place to another. There are
several different methods of movement depending
on your current location.
The three main types of movement are Town
Movement, Wilderness Movement, and Dungeon
Movement.
Each type should has its own rules and effects.

I123-1-A@Peter Lo 2007 46

Character Design
Every game has characters in it, but in RPG the
characters are especially important.
The characters have to be believable and must be
able to get the player emotionally attached to them.
You must weave a good story around them and let
it unfold, with the player right there with the
character every step of the way.
If you do, the story will have a lot more meaning
and contribute to the game much more.

I123-1-A@Peter Lo 2007 47

What kind of characters should
you have?

You may have characters who are shy, who are
confident, follow a religion devoutly, or anything
else you want. Make their personalities believable,
make the player care for the character.

I123-1-A@Peter Lo 2007 48

How to Design?
Base on the experiences from your own life.

You know best how you felt when something happened
to you, you know what different types of people are like.
Make characters that other people can relate to.

Make your characters unique.
While you will have to have a lot of similarities to other
video game characters, part of being human is being
unique, and if your character is not in the least unique
then they will be less believable.

I123-1-A@Peter Lo 2007 49

Dungeon Design
Don't make the whole map as a dungeons. Dungeon
usually in a castle or similar place.
Make the places as unique and original as possible. Try to
keep your player interested.
Going through one after another of the same type of place
get old real fast. Try to keep things fresh.
Don't make your places with confusing, almost completely
random layout.
Add puzzles in appropriate areas. You'll really have to use
your own judgment here, so just try to be original with it.

I123-1-A@Peter Lo 2007 50

What about the enemies in
your dungeons?

This one relies heavily on common sense.
In a forest, you might have evil trees that attack you.
In a castle dungeon, you might be fighting off the
guards so you can escape.
However, a prison guard would not be running around a
forest, nor would a evil tree be in some castle dungeon.

Use logic and try to make the enemies interesting. Don't
make the majority of the enemies the exact same thing, but
with different coloring. That brings down the quality of the
game quite a bit.

