DATA STRUCTURE AND
ALGORITHM USING PYTHON

Sorting, Searching Algorithm and Regular Expre

- Sorting Algorithms

Put Elements of List In Certain Order

Data Structure and Algorithm using Python @ Peter Lo 2018 2

Bubble Sort

The bubble sort makes multiple passes through a list.

It compares adjacent items and exchanges those that

are out of order. Each pass through the list places the

next largest value in its proper place. In essence, each

I tem Abubbleso up to the I o

| f there are n I tems I n the
items that need to be compared on the first pass. Itis
Important to note that once the largest value in the list is

part of a pair, it will continually be moved along until the
pass Is complete.

Data Structure and Algorithm using Python @ Peter Lo 2018 3

Bubble Sort Workflow

N
Bubble Sorting

First Pass Second Pass Third Pass
4 N g
ﬂswappinz (0O SWap~y \ (00 SWaP l
15|11 4|2]|8 1 12| 4
ﬂswapping [r-nu swap-]
N N
~11 (5|4]| 2 8] (— 1 12| 4
F\swappin:
N N
— 1/14|5| 2|8 —
N
'
\a

Example

def BubbleSort(arr): 54 |2

Get the Length of input List
n = len(arr)

Traverse through all array elements

for i in range(n): EE
4 2|1

Last 1 elements are already in place
for j in range(®, n-i-1): 2 |4 |1

traverse the array from 6 to n-i-1
Swap 1f the element found > next element
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Sort and print out result
InputList = [5, 4, 2, 1, 3]
BubbleSort(InputList)

print ("Sorted List:", InputList)

Sorted List: [1, 2, 3, 4, 5]

Selection Sort

The selection sort improves on the bubble sort by
making only one exchange for every pass through the
list.

In order to do this, a selection sort looks for the
smallest/largest value as it makes a pass and, after
completing the pass, places it in the proper location.

As with a bubble sort, after the first pass, the largest
item is in the correct place. After the second pass, the
next largest is in place. This process continues and
requires nil passes to s
must Dbe I n place after t

or t
h e

Data Structure and Algorithm using Python @ Peter Lo 2018 6

Selection Sort Workflow

42 | 16 | 84 | 12 | 77 | 26 | 53
12 | 16 | 64 | 42 | 77 | 26 | 53
[,
12 | 16 | 84 | 42 | 77 | 26 | 53
12 | 16 | 26 | 42 | 77 | 84 | 53
N,
12 | 16 | 26 | a2 | 77 | 84 | 53
12 | 16 | 26 | 42 | 53 | 84 | 77
S
£
12 | 16 | 26 | 42 | 53 | 77 | &4
A

The array, before the selection sort
operation begins.

The smallest number (12) is swapped
into the first element in the structure.

In the data that remains, 16 is the
smallest; and it does not need to
be moved.

26 is the next smallest number, and
it is swapped into the third position.

42 is the next smallest number; it is
already in the correct position.

53 is the smallest number in the data
that remains; and it is swapped to
the appropriate position.

Of the two remaining data items, 77 is
the smaller; the items are swapped.
The selection sort is now complete.

Data Structure and Algorithm using Python @ Peter Lo 2018

Selection Sort

swap

29

72

98

13

87

66

52

51

I—SW

ap—*

29

72

36

13

87

66

52

51

98

swap

28

72

36

13

51

¥

52

87

98

29

52

36

13

51

3

72

87

98

— swap j‘

29

52

36

13

51

72

87

98

I—SWBP 1

28

51

36

13

52

72

87

98

29

13

36

51

52

72

87

98

Ij, swap

28

13

36

51

52

72

87

98

Y W W W Y W W Y)

13

29

36

51

52

72

87

98

98 is largest

87 is largest

72 is largest

66 is largest
no swapping

52 is largest

51 is largest

36 is largest
ne swapping

29 is largest

sorting completed

S w3resource . com

Example (Find the Smallest)

def SelectionSort(arr):
Get the length of input Llist
n = len(arr)

Traverse through all array elements
for 1 in range(n):

Find the minimum element in remaining unsorted list
index = 1
for j in range(i+1, n):
if arr[index] > arr[j]:
index = j

Swap the found minimum element with the first element
arr[i], arr[index] = arr[index], arr[i]

Sort and Print out the result
InputList = [20, 8, 5, 10, 7]
SelectionSort(InputList)

print ("Sorted List:", InputList)

Sorted List: [5, 7, 8, 18, 20]

Data Structure and Algorithm using Python @ Peter Lo 2018

10

10

10

10

10

Example (Find the Largest)
N

def SelectionSort(arr):
Get the length of input Llist 10 | 20 | 31 | 5 |12
n = len(arr)

Traverse through all array elements 10| 20 | 12 | 5 |31
for 1 in range(n-1, @, -1):
;ﬁngigd_tge maximum element in remaining unsorted list 10 5 12 | 20 | 31

for j in range(1, i+l):
if arr[j] > arr[index]:
index = j 10 5 12 | 20 | 31

Swap the found maximum element with the last element
arr[i], arr[index] = arr[index], arr[i] 5 10 | 12 |20 | 31

Sort and Print out the result
InputList = [1e, 20, 31, 5, 12]
SelectionSort(InputList)

print ("Sorted List:", InputList)

Sorted List: [5, 1@, 12, 28, 31]

Data Structure and Algorithm using Python @ Peter Lo 2018 9

Insertion Sort

The insertion sort always maintains a sorted sublist in

the lower positions of the list. Each new item is then

Al nsertedo bac ksublishsuahthatthe pr
sorted sublist is one item larger.

We begin by assuming that a list with one item (position

0) is already sorted. On each pass, one for each item 1

t hrough n11, the current it
In the already sorted sublist. As we look back into the
already sorted sublist, we shift those items that are

greater to the right. When we reach a smaller item or the
end of the sublist, the current item can be inserted

Data Structure and Algorithm using Python @ Peter Lo 2018 10

Insertion Sort Workflow

Insertion Sort

BEBEAIEAIR

85| 12| 59 | 45 | 72 | 51

85| 58| 45| 72 | 51
12| 85| 59 | 45 | 72 | 51
12 85| 45| 72| 51
12| 59| 85 | 45 | 72 | 51
12| 59 85| 72| 51
12 59| 85| 72| 51

Assume B85 is a
sorted list of
1st item

85512 , shift
it to the right

so insert 12
in that place

85>59 , shift
it to the right

12=59, so
insert 59 in
that place

85>45 | shift
it to the right

59=45 | shift
it to the right

-

CAIVIY)¢)Y Y)

12| 45| 59 | 85 | 72 | 51
12| 45| 59 85 | 51
12| 45| 59 | 72 | 85 | 51
12| 45| 59 | 72 85
12| 45| 59 72 | 85
12 | 45 59| 72 | 85
12| 45| 51 | 59 | 72 | 85

12<45, s0
insert 45 in
that place

85=72 , shift
it to the right

859=72, s0
insert 72 in
that place

85=51 , shift
it to the right

72551 , shift
it to the right

59>51 , shift
it to the right

45=<51, so
insert 51 in
that place

B wiresourtce,.com

Example
I

def InsertionSort(arr):
Get the length of input List
n = len{arr)

Traverse through all array elements (except first element)
for i in range(1l, n):

currentvalue = arr[i]

position = 1

while position » @ and arr[position-1] > currentvalue:
arr[position] = arr[position-1]
position = position - 1

arr[position] = currentvalue

5 | 3
Inputlist = [5, 3, 1, 2, 6, 4] r‘
5

InsertionSort{Inputlist)
print(InputlList)

[1, 2, 3, 4, 5, 6]

Data Structure and Algorithm using Python @ Peter Lo 2018

Merge Sort

Merge Sort is a recursive algorithm that continually splits
a list in half.

If the list is empty or has one item, it is sorted by
definition. If the list has more than one item, we split the
list and recursively invoke a merge sort on both halves.

Once the two halves are sorted, the fundamental
operation, called a merge, is performed.

Merging is the process of taking two smaller sorted lists
and combining them together into a single, sorted, new
list.

Data Structure and Algorithm using Python @ Peter Lo 2018 13

Merge Sort Workflow

1 Divide the list into two parts

> Divide the list into two parts again

5. Break each element into single part

4. Sort the element from smallest to

largest
5. Merge the divided sorted arrays

together

5. The array has been sorted

38|27|43|3|9|82]|10
38|27 |43 |3 82 | 10
38 2?(43 | 3 9|82 10
AN PN
38 27 43 3 9 82 10
}2? 38 3|43 9|82 10
3273843 10 | 82
3/9|10|27 |38 |43 |82
14

Data Structure and Algorithm using Python @ Peter Lo 2018

Example

def MergeSort(alist):
if len(alist)»1:
mid = len{alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]

MergeSort(lefthalf)
MergeSort{righthalf)

o
1]
Lo T e I o |

while i < len{lefthalf) and j < len(righthalf):

if lefthalf[i] < righthalf[j]:
alist[k]=1lefthalf[i]
i=i+l

else:
alist[k]=righthalf[]]
j=j+1

k=k+1

while i < len(lefthalf):
alist[k]=lefthalf[i]
i=i+l
k=k+1

while j < len(righthalf):
alist[k]=righthalf[]]
Jj=j+1
k=k+1
Inputlist = [5, 8, 3, 9, 1, 2]
MergeSort(Inputlist)
print({Inputlist)

(1, 2, 3, 5, 8, 9]

MergeSort (Arr, 0, 2)
MergeSort MergeSort
MergeSort (Arr, 0, 1) (A, 2, 2) (Arr, 3, 4)

MergeSort
(Arr, 5, 5)
tf’ﬁp Q§§§1 Efﬁﬁ? <§§§j
teeyle] el froslo] ey [
N/ N4
Merge (Arr, 0, 0, 1) Merge (Arr, 3, 3, 4)
\ A\
Merge (Arr, 0, 2) Merge (Arr, 3, 5)
Merge (Arr, 0, 5) |1|2|3 |5|8|9|
15

Quick Sort

The Quick Sort algorithm consists of three steps:

Divide: Partition the list

To partition the list, we first choose a Pivot from the list for
which we hope about half the elements will come before and
half after.

Then we patrtition the elements so that all those with value less
than the pivot come in one sub list and all those with greater
values come in another

Recursion: Recursively sort the sub lists separately
Conquer: Put the sorted sub lists together

Data Structure and Algorithm using Python @ Peter Lo 2018 16

Quick Sort Workflow

17

v

v

i 4

)

i 4

v

Example

def partition(arr,low,high):
i=(1low-1) # Index of smaller element
pivot = arr[high] # Take last element as pivot

for j in range(low , high):
If current element <= pivot
if arr[j] <= pivot:
increment index of smaller element
i=i+1
arr[i],arr[j] = arr[j],arr[i]

arr[i+1], arr[high] =
return (1 +1)

arr[high], arr[i+1]

def QuickSortHelper(arr, low, high):
if low < high:

{10, 80, 30, 90, 40, 50,

Aﬂm BIID}\

1o, 30, 40, 70 (Last element) 0, @

Is’grt[tiun aruuny \ / ! Partition around 80
{10, 30, {3 {3 {00}

pl1 1s partitioning index, arr[p] is now at right place

pi = partition(arr, low, high)

Separately sort elements before partition and after partition

QuickSortHelper(arr, low, pi-1)
QuicksortHelper(arr, pi+1, high)

def QuickSort(arr):
QuickSortHelper(arr, @, len(arr)-1)

InputList = [1e, 8@, 3@, 9@, 40, 50, 70]
QuickSort(InputList)
print ("sorted List:", InputList)

sorted List: [1e, 30, 40, 50, 70, 80, 90]

18

Comparison of Sorting Algorithm
N

e SLCa5E__Average Case

Selection Sort

Bubble Sort n2 n2
Insertion Sort n? n?
Merge Sort nxlogn nxlogn
Quick Sort n? n x log n

Data Structure and Algorithm using Python @ Peter Lo 2018 19

Python sort() Function

Python lists have a built-in list.sort() method that
modifies the list in-place. There is also a sorted() built-in

function that builds a new sorted list from an iterable.
Input List = ['3", '5', "1', "2', '4']

Sort the list in ascending order
ResultlList = sorted(Input List)

print(ResultList)
[I11-' I2'|-! 13IJ 14I, I5I]
Input_List = ['3", '5', "1', "2', '4']

Sort the list in descending order
ResultlList = sorted(Input List, reverse=True)

print(ResultList)
[IE,HJ Idi-! 13I-! HEI’ I_:LI]
Data Structure and Algorithm using Python @ Peter Lo 2018 20

Which algorithm does Python sorted() use?

Timsort has been Python's standard sorting algorithm
since version 2.3.

Timsort is a hybrid sorting algorithm, derived from Merge
Sort and Insertion Sort, designed to perform well on
many kinds of real-world data.

It was invented by Tim Peters in 2002 for use in the
Python programming language.

The algorithm finds subsets of the data that are already
ordered, and uses the subsets to sort the data more
efficiently. This is done by merging an identified subset,

called a run, with existing runs until certain criteria are
fulfilled.

Data Structure and Algorithm using Python @ Peter Lo 2018 21

- Searching Algorithms

Sequential Search, Binary Search

Data Structure and Algorithm using Python @ Peter Lo 2018 22

Sequential Search

Starting at the first item in the list, we simply move from
item to item, following the underlying sequential ordering

until we either find what we are looking for or run out of
items.

If we run out of items, we have discovered that the item
we were searching for was not present

54 26 | 93 17 | 77 31 44 55 20 | 65

Start

Data Structure and Algorithm using Python @ Peter Lo 2018 23

Example

def SequentialSearch(Input_List, Search_Item):
Define the found flag
found = False Linear Search for "2" in 6 elements array

for 1 in Toput tist: =
L g Given Array
for 1 in Input_List:

Stop if item found

if i == Search_Item:
found = True
break

Return result
return found

InputList = [5, 9, 18, 2, %@, 4]
print(SequentialSearch(InputList, 2))

True

Data Structure and Algorithm using Python @ Peter Lo 2018

10!=2

2 found at
index3. _

24

Binary Search

Instead of searching the list in sequence, a binary search will
start by examining the middle item.

If that item is the one we are searching for, we are done. If it
IS not the correct item, we can use the ordered nature of the
list to eliminate half of the remaining items.

If the item we are searching for is greater than the middle
item, we know that the entire lower half of the list as well as
the middle item can be eliminated from further consideration.
The item, if it is in the list, must be in the upper half.

We can then repeat the process with the upper half. Start at
the middle item and compare it against what we are looking
for. Again, we either find it or split the list in half, therefore

eliminating another large part of our possible search space.

Data Structure and Algorithm using Python @ Peter Lo 2018 25

Binary Search Workflow
N

Binary Search for 50 in 7 elements Array

Given Array 1 5(20 |35 |50 |65 |70

0 ¥ 2 3 N & @

start end
4 046 35 < 50
5 1| 5|20|35|50(65|70 Take 2™ Half
=
0 1 2 4 5 6
start end
mid=4+6 65 > 50
52 1 5 ’ PRIl 50 | 65 | 70 Take 1= Half
0 1 2 3 4 BEN 6
start end
1 _4+4
mid= 5 1 s |20 | 35 m 65 | 70 50 Found
& Return 50
0 1 2 3 @M 5 6

_‘,:] lr‘; l__s, A 26

Example
I

def BinarySearch(Input_List, Search_Item):
first = ©
last = len(Input_List)-1
found = False

while first<=last and not found:

midpoint = (first + last)//2

if Input_List[midpoint] == Search_Item:
found = True

else:
if Search_Item < Input_List[midpoint]:

last = midpoint-1

else:

first = midpoint+l | 1J2 5 6-9 1 13j g‘:%‘(::hooscright)
Return result = : <~
return found 719 113 9 < 11 (choose left)
: e
Inputlist = [1, 2, 5, 6, 7, 9, 11, 13] z- Step 3:
print(BinarySearch(InputList, 9)) + 9 = 9 (key located)

True

Comparison
|

Binary search steps: @

ST Ll lols Bl Ll s o]
1 11 12 14 15 16

e 1 2 3 4 5 6 7 8 9 13
Low mid high
Sequential search steps: @

]
Ln
=]
=2
i
=2
L
=t
|
=t
WO
J
Ll
PJ
WO
Lnl
=t
e
o =l
B
Py
=
|
Ln
L
LN
WO

28
WWW.pENjee.com

- Regular Expression

A Simplified Guide

Data Structure and Algorithm using Python @ Peter Lo 2018 29

Regular Expression Module

A regular expression in a programming language is a
special text string used for describing a search pattern.

It is extremely useful for extracting information from text
such as code, files, log, spreadsheets or even
documents.

It is widely used in natural language processing, web
applications that require validating string and pretty
much most data science projects that involve text mining.

In python, it is implemented in the standard module re.

More information can be found in https://docs.python.org/3/library/re.html

Data Structure and Algorithm using Python @ Peter Lo 2018 30

What Is a regex pattern?

A regex pattern is a special language used to represent
generic text, numbers or symbols so it can be used to
extract texts that conform to that pattern.

Consider an exanspd.e expr ess
Her e \dohanaft ches any whit esg

By adding a '+' notation at the end will make the
pattern match at least 1 or more spaces.

So this pattern will match even tab characters as well.

Data Structure and Algorithm using Python @ Peter Lo 2018 31

Split String Separated by regex

If you intend to use a particular pattern multiple times,
then you are better off compiling a regular expression
rather than using re.split over and over again.

COM 101 Computers
. This file contain three column, but the separator are
MAT 285 Mathematics .
. different.

ENG 189 English
import re
with open("Course.txt", "r") as infFile: The \s' matches any whitespace character. By

Read the data to End of File adding a '+' notation at the end will make the

Instrem = inFile.read() pattern match at least 1 or more spaces. This

pattern will match even tab '\t' characters as well
SplLit the data by space, tab, new Line
ResultList = re.split('\s+', InStrem)

Print the result out
print(ResultList)

['com', "1@1"', 'Computers', 'MAT', '285', 'Mathematics', 'ENG', '189", 'English’']

Greedy vs Non-greedy Matching

Greedy matching gets the longest results possible
Nongreedy matching gets the shortest possible
Consi der al3/8BCH56RYYGO = N

For greedy expression: \d+
Result:[| " 123", ' 4560]
Maximizes the length of \d

For non-greedy expression: \d+?
Result: ['1','2','3", '4','5", '6']
Minimizes the length of \d

Data Structure and Algorithm using Python @ Peter Lo 2018 33

Wildcards and Anchors

. (a dot) matches any character except \n

".00.y" matches "Doocy", "goofy", "LooPy", ...

use \. to literally match a dot . character

import re
String = "Dog. Doocy Doooth"

regex = re.compile(r.oo.y”}
Result = regex.findall(String)
print(Result)

regex = re.compile("og\.")
Result = regex.findall(String)
print(Result)

['Doocy ']
n]
["og."]
Data Structure and Algorithm using Python @ Peter Lo 2018

Wildcards and Anchors

N matches the beginning of a line; $ the end
"Mi$" matches lines that consist entirely of fi

import re
String = "This is a demo”

regex = re.compile("*This")
Result = regex.findall(String)
print(Result)

regex = re.compile("demo$")
Result = regex.findall(String)
print(Result)

if String.startswith("This") and String.endswith("demo"):
print(String)

['This']
["demo']
This 1s a demo

Boolean

I e
4 | means OR
A "abc|def|g" matches lines with "abc", "def", or "g"

import re
String = "abc is different from def or g"
regex = re.compile("abc|def|g")

Result = regex.findall(String)
print(Result)

["abc', 'def', 'g']

Data Structure and Algorithm using Python @ Peter Lo 2018 36

Grouping

S =
A () are for grouping
A "(Homer|Marge)" matches lines containing "Homer" or
"Marge”

Data Structure and Algorithm using Python @ Peter Lo 2018 37

