
DATA STRUCTURE AND

ALGORITHM USING PYTHON

Peter Lo

Sorting, Searching Algorithm and Regular Expression

Put Elements of List in Certain Order

Sorting Algorithms

2Data Structure and Algorithm using Python @ Peter Lo 2018

Bubble Sort

3

Ã The bubble sort makes multiple passes through a list.

Ã It compares adjacent items and exchanges those that

are out of order. Each pass through the list places the

next largest value in its proper place. In essence, each

item ñbubblesò up to the location where it belongs.

Ã If there are n items in the list, then there are nī1 pairs of

items that need to be compared on the first pass. It is

important to note that once the largest value in the list is

part of a pair, it will continually be moved along until the

pass is complete.

Data Structure and Algorithm using Python @ Peter Lo 2018

Bubble Sort Workflow

4

Ã fds

Data Structure and Algorithm using Python @ Peter Lo 2018

Example

5Data Structure and Algorithm using Python @ Peter Lo 2018

Selection Sort

6

Ã The selection sort improves on the bubble sort by

making only one exchange for every pass through the

list.

Ã In order to do this, a selection sort looks for the

smallest/largest value as it makes a pass and, after

completing the pass, places it in the proper location.

Ã As with a bubble sort, after the first pass, the largest

item is in the correct place. After the second pass, the

next largest is in place. This process continues and

requires nī1 passes to sort n items, since the final item

must be in place after the (nī1) pass.

Data Structure and Algorithm using Python @ Peter Lo 2018

Selection Sort Workflow

7Data Structure and Algorithm using Python @ Peter Lo 2018

Example (Find the Smallest)

8Data Structure and Algorithm using Python @ Peter Lo 2018

Example (Find the Largest)

9Data Structure and Algorithm using Python @ Peter Lo 2018

Insertion Sort

10

Ã The insertion sort always maintains a sorted sublist in

the lower positions of the list. Each new item is then

ñinsertedò back into the previous sublist such that the

sorted sublist is one item larger.

Ã We begin by assuming that a list with one item (position

0) is already sorted. On each pass, one for each item 1

through nī1, the current item is checked against those

in the already sorted sublist. As we look back into the

already sorted sublist, we shift those items that are

greater to the right. When we reach a smaller item or the

end of the sublist, the current item can be inserted

Data Structure and Algorithm using Python @ Peter Lo 2018

Insertion Sort Workflow

11Data Structure and Algorithm using Python @ Peter Lo 2018

Example

12Data Structure and Algorithm using Python @ Peter Lo 2018

Merge Sort

13

Ã Merge Sort is a recursive algorithm that continually splits

a list in half.

Ã If the list is empty or has one item, it is sorted by

definition. If the list has more than one item, we split the

list and recursively invoke a merge sort on both halves.

Ã Once the two halves are sorted, the fundamental

operation, called a merge, is performed.

Ã Merging is the process of taking two smaller sorted lists

and combining them together into a single, sorted, new

list.

Data Structure and Algorithm using Python @ Peter Lo 2018

Merge Sort Workflow

14Data Structure and Algorithm using Python @ Peter Lo 2018

1. Divide the list into two parts

2. Divide the list into two parts again

3. Break each element into single part

4. Sort the element from smallest to

largest

5. Merge the divided sorted arrays

together

6. The array has been sorted

Example

15Data Structure and Algorithm using Python @ Peter Lo 2018

Quick Sort

16

Ã The Quick Sort algorithm consists of three steps:

ÄDivide: Partition the list

ÂTo partition the list, we first choose a Pivot from the list for

which we hope about half the elements will come before and

half after.

ÂThen we partition the elements so that all those with value less

than the pivot come in one sub list and all those with greater

values come in another

ÄRecursion: Recursively sort the sub lists separately

ÄConquer: Put the sorted sub lists together

Data Structure and Algorithm using Python @ Peter Lo 2018

Quick Sort Workflow

17Data Structure and Algorithm using Python @ Peter Lo 2018

Example

18Data Structure and Algorithm using Python @ Peter Lo 2018

Comparison of Sorting Algorithm

19

Worst Case Average Case

Selection Sort n2 n2

Bubble Sort n2 n2

Insertion Sort n2 n2

Merge Sort n x log n n x log n

Quick Sort n2 n x log n

Data Structure and Algorithm using Python @ Peter Lo 2018

Python sort() Function

20

Ã Python lists have a built-in list.sort() method that

modifies the list in-place. There is also a sorted() built-in

function that builds a new sorted list from an iterable.

Data Structure and Algorithm using Python @ Peter Lo 2018

Which algorithm does Python sorted() use?

21

Ã Timsort has been Python's standard sorting algorithm
since version 2.3.

Ã Timsort is a hybrid sorting algorithm, derived from Merge
Sort and Insertion Sort, designed to perform well on
many kinds of real-world data.

Ã It was invented by Tim Peters in 2002 for use in the
Python programming language.

Ã The algorithm finds subsets of the data that are already
ordered, and uses the subsets to sort the data more
efficiently. This is done by merging an identified subset,
called a run, with existing runs until certain criteria are
fulfilled.

Data Structure and Algorithm using Python @ Peter Lo 2018

Sequential Search, Binary Search

Searching Algorithms

22Data Structure and Algorithm using Python @ Peter Lo 2018

Sequential Search

23

Ã Starting at the first item in the list, we simply move from

item to item, following the underlying sequential ordering

until we either find what we are looking for or run out of

items.

Ã If we run out of items, we have discovered that the item

we were searching for was not present

Data Structure and Algorithm using Python @ Peter Lo 2018

Example

24Data Structure and Algorithm using Python @ Peter Lo 2018

Binary Search

25

Ã Instead of searching the list in sequence, a binary search will
start by examining the middle item.

Ã If that item is the one we are searching for, we are done. If it
is not the correct item, we can use the ordered nature of the
list to eliminate half of the remaining items.

Ã If the item we are searching for is greater than the middle
item, we know that the entire lower half of the list as well as
the middle item can be eliminated from further consideration.
The item, if it is in the list, must be in the upper half.

Ã We can then repeat the process with the upper half. Start at
the middle item and compare it against what we are looking
for. Again, we either find it or split the list in half, therefore
eliminating another large part of our possible search space.

Data Structure and Algorithm using Python @ Peter Lo 2018

Binary Search Workflow

26Data Structure and Algorithm using Python @ Peter Lo 2018

Example

27Data Structure and Algorithm using Python @ Peter Lo 2018

Comparison

28Data Structure and Algorithm using Python @ Peter Lo 2018

A Simplified Guide

Regular Expression

29Data Structure and Algorithm using Python @ Peter Lo 2018

Regular Expression Module

30

Ã A regular expression in a programming language is a

special text string used for describing a search pattern.

Ã It is extremely useful for extracting information from text

such as code, files, log, spreadsheets or even

documents.

Ã It is widely used in natural language processing, web

applications that require validating string and pretty

much most data science projects that involve text mining.

Ã In python, it is implemented in the standard module re.

Data Structure and Algorithm using Python @ Peter Lo 2018

More information can be found in https://docs.python.org/3/library/re.html

What is a regex pattern?

31

Ã A regex pattern is a special language used to represent

generic text, numbers or symbols so it can be used to

extract texts that conform to that pattern.

Ã Consider an example expression ñ\s+ò.

ÄHere the ñ\sò matches any whitespace character.

ÄBy adding a '+' notation at the end will make the

pattern match at least 1 or more spaces.

ÄSo this pattern will match even tab characters as well.

Data Structure and Algorithm using Python @ Peter Lo 2018

Split String Separated by regex

32

Ã If you intend to use a particular pattern multiple times,

then you are better off compiling a regular expression

rather than using re.split over and over again.

Data Structure and Algorithm using Python @ Peter Lo 2018

The '\s' matches any whitespace character. By

adding a '+' notation at the end will make the

pattern match at least 1 or more spaces. This

pattern will match even tab '\t' characters as well

This file contain three column, but the separator are

different.

Greedy vs Non-greedy Matching

33

Ã Greedy matching gets the longest results possible

Ã Nongreedy matching gets the shortest possible

Ã Consider an String = ñ123 ABC 456 xyzò

Ä For greedy expression: \d+

ÂResult: ['123', '456ô]

ÂMaximizes the length of \d

Ä For non-greedy expression: \d+?

ÂResult: ['1', '2', '3', '4', '5', '6']

ÂMinimizes the length of \d

Data Structure and Algorithm using Python @ Peter Lo 2018

Wildcards and Anchors

34

Ã . (a dot) matches any character except \n

Ä ".oo.y" matches "Doocy", "goofy", "LooPy", ...

Ä use \. to literally match a dot . character

Data Structure and Algorithm using Python @ Peter Lo 2018

Wildcards and Anchors

35

Ã ^ matches the beginning of a line; $ the end

Ä "^fi$" matches lines that consist entirely of fi

Ã \< demands that pattern is the beginning of a word; \>

demands that pattern is the end of a word

Ä "\<for\>" matches lines that contain the word "for"

Data Structure and Algorithm using Python @ Peter Lo 2018

Boolean

36

Ã | means OR

Ä "abc|def|g" matches lines with "abc", "def", or "g"

Ä precedence of ^(Subject|Date) vs. ^Subject|Date:

Ä There's no AND symbol.

Data Structure and Algorithm using Python @ Peter Lo 2018

Grouping

37

Ã () are for grouping

Ä "(Homer|Marge)" matches lines containing "Homer" or

"Marge"

Data Structure and Algorithm using Python @ Peter Lo 2018

