
ANDROID APPS DEVELOPMENT FOR
MOBILE GAME

Peter Lo

Lecture 3: Android Life Cycle and Intent

Entire Lifetime

2

� An activity begins its lifecycle when entering the onCreate() state

� If not interrupted or dismissed, the activity performs its job and
finally terminates and releases its acquired resources when
reaching the onDestroy() event.

4T026-1-A @ Peter Lo 2015

Entire Lifetime For example, if it has a
thread running in the
background to download
data from the network, it
may create that thread in
onCreate()and then stop the
thread in onDestroy().

Visible Lifetime

3

� It happens between a call to onStart() until a corresponding call to
onStop().

� During this time the user can see the activity on-screen, though it
may not be in the foreground and interacting with the user.

� You can maintain resources that are needed to show the activity to
the user between these two methods.

4T026-1-A @ Peter Lo 2015

Visible Lifetime

For example, you can register a
BroadcastReceiver in onStart()to
monitor for changes that impact your
UI, and unregister it in onStop() when
the user no longer sees what you are
displaying. The onStart() and onStop()
methods can be called multiple times,
as the activity becomes visible and
hidden to the user.

Foreground Lifetime

4

� It happens between a call to onResume() until a corresponding call
to onPause().

� During this time the activity is in front of all other activities and
interacting with the user. An activity can frequently go between the
resumed and paused states

4T026-1-A @ Peter Lo 2015

Foreground Lifetime For example when the device goes to
sleep, when an activity result is delivered,
when a new intent is delivered – so the
code in these methods should be fairly
lightweight.

Life Cycle Callbacks

54T026-1-A @ Peter Lo 2015

All activities must implement
onCreate()to do the initial setup
when the object is first instantiated

Activities should implement
onPause()to commit data changes
in anticipation to stop interacting
with the user

Applications do not need to implement each of
the transition methods, however there are
mandatory and recommended states to consider

6

Activity Lifecycle

4T026-1-A @ Peter Lo 2015 6

� If an activity in the foreground of the screen,
it is active or running.

� If an activity has lost focus but is still visible,
it is paused. A paused activity is completely
alive, but can be killed by the system in
extreme low memory situations.

� If an activity is completely obscured by
another activity, it is stopped. It still retains all
state and member information, but no longer
visible to the user so its window is hidden
and it will often be killed by the system when
memory is needed elsewhere.

� If an activity is paused or stopped, the
system can drop the activity from memory by
either asking it to finish, or simply killing its
process. When it is displayed again to the
user, it must be completely restarted and
restored to its previous state.

Option Menu

� Options Menu is the one that appears when you click
the menu button on older Android devices, or via the
action bar at the top of the screen in newer ones (> 3.0).

� The options menu should handle global application
actions that make sense for the whole app.

4T026-1-A @ Peter Lo 2015

Beginning with Android 3.0 (API level 11),
Android-powered devices are no longer
required to provide a dedicated Menu button.
With this change, Android apps should migrate
away from a dependence on the traditional 6-
item menu panel and instead provide an action
bar to present common user actions.

7

Creating Option Menu

8

� To specify the options menu for an activity, override
onCreateOptionsMenu(). You can inflate your menu
resource (defined in XML) into the Menu provided in the
callback:

4T026-1-A @ Peter Lo 2015

Handling Click Events for Option Menu

9

� When the user selects an item from the options menu, the system
calls your activity's onOptionsItemSelected() method.

� This method passes the MenuItem selected. You can identify the
item by calling getItemId(), and match this ID against known menu
items to perform the appropriate action

4T026-1-A @ Peter Lo 2015

When you successfully handle a menu item,
return true. If you don't handle the menu item,
you should call the superclass implementation
of onOptionsItemSelected(), the default
implementation returns FALSE.

Action Bar

10

� Located at the top of the activity.

� Can display the activity title, icon, actions which can be triggered,
additional views and other interactive items.

� Provides several features that make your app immediately familiar
to users by offering consistency between other Android apps:
1. A dedicated space for giving your app an identity and indicating the

user's location in the app.

2. Access to important actions in a predictable way (e.g. Search).

3. Support for navigation and view switching (with tabs or drop-down lists).

4T026-1-A @ Peter Lo 2015

Convert Menu Item into Action Bar

11

� In order to convert the menu item into action bar, set
ShowAsAction = always in the menu.

4T026-1-A @ Peter Lo 2015

Simple XML for Menu

124T026-1-A @ Peter Lo 2015
Submenu items are bounded
in <menu> tag

By setting showAsAction = “always”,
this menu item and corresponding
submenu items will show in Action Bar

Display as icon using
customize icon (from
drawable folder)

Display as icon using
system icon

The menu is
declared inside
<menu> tag

Contextual Menus

13

� Contextual Menus appear when you long-click on an
element.

� Contextual menus should handle element-specific
actions. They're particularly useful in GridView or
ListView layouts, where you are showing the user a list
of elements.

4T026-1-A @ Peter Lo 2015

Creating Context Menu

14

� To specify the options menu for an activity, override
onCreateContextMenu(). You can inflate your menu
resource (defined in XML) into the Menu provided in the
callback:

4T026-1-A @ Peter Lo 2015

By calling registerForContextMenu()
and passing it a View you assign it a
context menu. When this View receives a
long-press, it displays a context menu.

By overriding the activity's context menu create
callback method, onCreateContextMenu()

Handling Click Events for Context Menu

15

� When the user selects an item from the context menu, the system
calls your activity's onContextItemSelected () method.

� This method passes the MenuItem selected. You can identify the
item by calling getItemId(), and match this ID against known menu
items to perform the appropriate action

4T026-1-A @ Peter Lo 2015

When you successfully handle a menu item,
return true. If you don't handle the menu item,
you should call the superclass implementation
of onContextItemSelected(), the default
implementation returns FALSE.

Intents

16

� Intents are asynchronous messages which allow
application components to request functionality from
other Android components.

� Intents allow you to interact with components from the
own and other applications.

� For example an activity can start an external activity
for taking a picture.

4T026-1-A @ Peter Lo 2015

Intent: { Action + Data }

Optional results

Creating Simple Intent

17

� Typically an intent is called with Action/Data pair:

4T026-1-A @ Peter Lo 2015

Intent myIntent = new Intent(Intent.ACTION_VIEW,

Uri.parse(“www.polyu.edu.hk”));

startActivity (myIntent);

The built-in action to be performed, such
asACTION_VIEW, ACTION_EDIT,
ACTION_CALL, or user-created-activity

The primary data to operate on,
such as a phone number to be
called (expressed as aUri such
as tel:// , http:// , sendto://)

The startActivity()method is used to start a new activity,
which will be placed at the top of the activity stack.

Common Intent Action/Data Pairs

184T026-1-A @ Peter Lo 2015

Examples of action/data pairs are:

ACTION_DIAL tel:27665111
Display the phone dialer with the given number filled in.

ACTION_SENDTO smsto:27665111
Display the SMS editor with the given number filled in.

ACTION_VIEW http://www.polyu.edu.hk
Show specified web page in a browser view.

ACTION_VIEW content://contacts/people/

Display a list of people, which the user can browse through.

Selecting a particular person to view would result in a new intent

ACTION_EDIT content://contacts/people/2
Edit information about the contact person whose identifier is "2".

Secondary Attributes

19

� In addition to the primary action/data attributes, there are secondary
attributes that you can also include with an intent, such as:
Category, Components, Type, and Extras.

4T026-1-A @ Peter Lo 2015

Type
Set an explicit MIME data type

contacts/people
images/pictures
images/video
audio/mp3

MIME - Multipurpose Internet Mail Extensions

Extras
This is a Bundle of any additional
information. Typical methods include:
bundle.putInt(key, value)

bundle.getInt(key)

Category
additional information about the action
to execute

Component
Explicit name of a component class to use
for the intent (eg. “MyMethod1”)

Creating Intent with Secondary Attribute

20

� We can pass the secondary attribute with the
putExtra() method:

4T026-1-A @ Peter Lo 2015

Intent myIntent = new Intent(Intent.ACTION_WEB_SEARCH);

myIntent.putExtra(SearchManager.QUERY, "PolyU");

startActivity(myIntent);

The built-in action to be performed, such
asACTION_VIEW, ACTION_EDIT,
ACTION_CALL, or user-created-activity

The secondary data to operate
on, such as passing a string as an
Extra argument for a Google
Search. The string is a ‘human’
query with keywords.

The startActivity()method is used to start a new activity,
which will be placed at the top of the activity stack.

Starting Activities and Getting Results

214T026-1-A @ Peter Lo 2015

� In order to get results back from the called activity we
use the method

� startActivityForResult (Intent, requestCodeID)

� Where requestCodeID is an arbitrary value you choose
to identify the call (similar to a ‘nickname’).

� The result sent by the sub-activity could be picked up
through the listener-like asynchronous method

� onActivityResult (requestCodeID, resultCode, Intent)

Starting Activities and Getting Results

22

� Before an invoked activity exits, it can call setResult() to return a
termination signal back to its parent.

� All of this information can be capture back on the parent's

onActivityResult().

requestCodeID

resultCode
optional data

Intent: { action, data,
requestCodeID }

It is convenient to supply a result code, which can be the standard
results such as Activity.RESULT_OK. If a child activity fails for
any reason (such as crashing), the parent activity will receive a
result with the code RESULT_CANCELED.

4T026-1-A @ Peter Lo 2015

